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Executive Summary 
 

10% of the world’s population is dependent on karst water resources for drinking water. 

Understanding the functioning of these complex, heterogeneous systems is, therefore, a major water 

resource management challenge. Over the past century, many methods have been developed to 

analyse hydrological series, and subsequently used to characterize the functioning of karst 

hydrosystems. These methods are a first step in the development of a conceptual model of the 

functioning of the studied hydrosystems, and the design of models for sustainable water resource 

management. However, progress in analytical tools and communication requires to reconsider 

classifications of hydrodynamic responses that were developed several decades ago. 

WP4 proposes new approaches to the characterization and hydrodynamic modelling of karst systems, 

based on conceptual models, neural networks, and physical models. The first step is to propose a 

typology of the hydrodynamic responses of diverse karst systems, based on the analysis of discharge 

series measured at system outlets. 

This document addresses Task 4.1 (Typology of karst hydrodynamic responses). The aim is to identify 

and understand the principal processes that dominate the overall behaviour of karst systems, in order 

to better constrain models that simulate the hydrodynamics of these hydrosystems. 

The overall goal of this task was to develop a classification of karst systems and karst spring 

hydrodynamic responses. This requires the identification of the functioning of the various 

compartments within a system, and their ability to attenuate the precipitation signal, and to store and 

release infiltrated water. The objectives of this work are to assess the “state-of-the-art” methods used 

to characterize systems on the basis of their hydrodynamic response analysis, and then to examine 

how these methods could be updated. Opportunities for innovation in the form of new methods and 

the application of existing tools are also discussed. 

For this task, the KARMA data were not used due to COVID-19, which induced a delayed project start 

of some partners. In order to keep the deadline for this deliverable, a relevant dataset of 10 karst 

systems was used instead, thus synergizing with the SNO KARST project (Jourde et al., 2018), the Parc 

Naturel Régional des Grands Causses, Suez, and the DREAL of Bourgogne Franche-Comté. In a second 

phase, the WoKaS database (Olarinoye et al., 2020) has been used for validating the results of the 

typology. The same concept can be applied to all KARMA test sites and will be done later on (either in 

an updated version of this deliverable, or in another suitable form), as soon as all the data are available 

from KARMA partners.  
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Introduction 
KARMA (Karst Aquifer Resources availability and quality in the Mediterranean Area) is a European 

project that aims to achieve substantial progress with respect to the hydrogeological understanding 

and sustainable management of Mediterranean karst water resources at various temporal and spatial 

scales. 

The main objective of WP4 is to propose a generic classification method that can be used on a 

maximum number of karst systems. This implies: (i) that it should be applicable to catchments with 

recent instrumentation (discharge time series over a few hydrological cycles only); and (ii) that it 

should be understandable and accessible, offering a clear and intuitive user interface. This work aims 

to re-evaluate existing typological approaches, based on the following questions: 

• Can existing approaches be simplified or improved (through the integration of 
complementary indicators, improvements to methods, or the use of simple statistical 
indicators)?  

• Is it possible to develop a systematic methodology that can be applied to a wide variety of 
systems? 

Establishing a typology requires careful consideration of what to define and what to highlight. The 

information provided by a spring discharge series relates to, essentially, the inertia of the system, the 

degree of karstification, the estimation of reserves, and the identification of specific behaviors. The 

application of analyses to periods of high and low water makes it possible to highlight potential 

seasonal variability. However, adapting our systematic methodology to relatively short spring 

discharge time series makes it more difficult to characterize interannual variability (i.e. system 

stability), as the latter require a long period of observation.  

This report is divided into five main sections: 

• Section 1 presents the dataset and the karst hydrosystems analyzed in the study; 

• Section 2 presents the state-of-the-art methods for analyzing spring discharge series, and 
presents indicators used to characterize karst hydrosystems; 

• Section 3 develops the methodology and presents the results of the application of the 
methods to the dataset; 

• Section 4 proposes a typology based on the results obtained, together with a classification 
methodology; 

• Section 5 presents perspectives of further improvements of the proposed typology. 
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1 Sample data 

1.1 Data selection criteria 

This study aims to propose a typology of karst hydrosystems, based on the analysis of hydrodynamic 

series. Given this objective, it is all the more important to ensure the quality of the dataset and its 

relevance to the problem. Therefore, a number of karst systems were selected based on the criteria 

listed below, with the goal of developing a coherent dataset: 

• Hydrodynamic monitoring: Hydrodynamic records are characterized by their quality, and the 
length of the time series. The confidence that can be placed in the results is directly linked to 
the quality and the length of the series. Quality is a function of the time step, instrumentation, 
and measurement uncertainty, and has a direct influence on the results of the analyses. The 
length of the series can also influence results as, if the observation period is too short, it 
creates a bias linked to meteorological conditions (e.g. a dry year). This criterion was applied 
to eliminate systems for which the dataset risked introducing excessive bias into the results; 

• Various hydrological functioning: Systems were selected on the basis of several 
characteristics: the catchment area, mean rainfall, degree of karstification, and hydrological 
functioning. The objective was to study systems that cover a wide range of hydrological 
functioning, and thus to introduce some variety into the results; 

• Knowledge of systems: Prior knowledge of systems hydrodynamic behavior makes it possible 
to ensure that results are coherent. This criterion allows selecting systems that have been the 
subject of comprehensive studies based on a variety of methods such as geology, cartography, 
field observations, tracing, geochemistry, and modeling. 

1.2 The dataset 

Ten karst systems, located in France, were selected (Figure 1). Data were retrieved from several 

organizations: the Service National d’Observation du Karst - SNO KARST (Jourde et al., 2018), the Parc 

Naturel Régional des Grands Causses (PNRGC), Suez, and the DREAL of Bourgogne Franche-Comté. 

The characteristics of the studied systems are presented in Table 1. 

Table 1: Summary of the springs studied (Thiéry, 2018; Lorette et al., 2018). 

System 
 

Station 
code 

Mean 
interannual 

discharge 
m3/s 

Altitude of 
the spring 

m 

Area of the 
catchment 

km2 

Aliou (La Gouarègue at Cazavet) O0525010 0.45 441 12 
Baget (Le Lachein at Balaguères) O0485110 0.48 481 13 
Durzon (The Mas de Pomier stream at Nant) O3335010 1.46 515 117 
Esperelle (The Espérelle stream at Roque-Sainte-Marguerite) O3395010 1.17 390 91 
Fontaine-de-Nîmes (Nîmes) / 0.83 30 45 
Fontaine-de-Vaucluse (La Sorgue at Fontaine-de-Vaucluse) V6155010 17.54 105 1115 
Lods (The Grand-Bief spring at Lods) / 1.08 360 35 
Mouline (The ru of the Mo fish farm at Lapanouse-de-Cernon) O3416810 0.53 510 32 
Mouthe (The Doubs at Mouthe) U2002010 1.63 945 50 
Toulon (The Toulon spring at Périgueux) / 0.48 83.5 100 
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Figure 1: Location of the selected 10 karst hydrosystems. 

1.3 The WoKaS database 

The WoKaS database aims to improve access to data about karst systems, support large-scale 

comparative research, improve hydrosystem management, and promote international and 

interdisciplinary collaborations (Olarinoye et al. 2020). It provides details of over 400 karst systems in 

around 30 countries worldwide. To assess data accuracy and quality, five classes have been defined, 

based on four criteria. Only systems with very good quality (Class A) flow data, which met the four 

criteria given in Section 1.1, were included in our assessment of the proposed typology. 
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2 State-of-the-art of flow time series analysis methods 

The analysis of flow time series at the outlet of systems is widely used to characterize the functioning 

of karst systems. Consequently, we developed an inventory of flow time series analysis methods with 

the aim of identifying those suited to the development of a typology, as follows: 

• Statistical analyses, 
• Analysis of recession, 
• Correlational and spectral analyses, 
• Analysis of classified spring discharges. 

Because this study aimed to propose a way to characterize karst systems based on short time series, 

signal analysis methods such as wavelet or R/S analyses were not considered as they require multi-

annual series. 

A comprehensive, detailed review of current flow analysis methods is given in Cinkus (2020). 

2.1 Statistical analyses 

Basic statistical analyses of a flow time series make it possible to obtain indicators that characterize 

the overall functioning of a system. The most common are the mean, standard deviation, and the 

various quantiles. The amplitude and frequency of change in the spring discharge are a function of the 

system geometry, and its hydrodynamic properties (Malík, 2015). 

The mean and standard deviation provide information on the size and dynamics of a system. To 

facilitate comparison among systems, Flora (2004) and Springer et al. (2004) proposed the coefficient 

of variation (COV): 

      (1) 

where σ is the standard deviation and x ̄ is the arithmetic mean of a flow time series. This indicator 

makes it possible to dispense with the size of the system. Flora (2004) and Springer et al. (2004) have 

established a classification of springs based on the COV (Table 2). 

The spring variability coefficient (SVC) is based on the comparison of discharges and the 10% and 90% 

quantiles: 

       (2) 

where Q10 corresponds to the discharge that is exceeded 10% of the time, and Q90 is the rate that is 

exceeded 90% of the time. A classification of springs is proposed by Flora (2004) and Springer et al. 

(2004) based on the work of Meinzer (1923), Netopil (1971) and Alfaro and Wallace (1994) (Table 3). 

This indicator makes it possible to ignore variability linked to extreme values. 
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Table 2: Classification of springs based on the flow coefficient of variation (COV) (Flora, 2004; Springer et al., 2004). 

Spring’s classification 
Spring coefficient of variation 

parameter (SCVP) 

Low 0 – 49  
Moderate 50 – 99 
High 100 – 199 
Very High > 200 

 

Table 3: Classification of springs based on the coefficient of variability (SCV) (Flora, 2004; Springer et al., 2004). 

Spring’s classification Spring variability coefficient (SVC) 

Steady 1 – 2.5  
Well balanced 2.6 – 5 
Balanced 5.1 – 7.5 
Unbalanced 7.6 – 10 
Highly unsteady >10 

Ephemeral ∞ 

2.2 Recession analysis 

The hydrograph of a flood recession corresponds to the period when discharge gradually decreases as 

water is not replenished (Toebes and Strang, 1964). It is possible to distinguish two regimes: (i) the 

influenced (quickflow) regime, which corresponds to the period when flow is influenced by the rapid 

infiltration of water into conduits in the unsaturated zone (Moussu, 2011); and (ii) the non-influenced 

(baseflow) regime, which begins when rapid infiltration ends, and corresponds to the emptying of the 

saturated zone and less transmissive compartments of the system. The analysis of recession is mainly 

used: to assess reserves (Drogue, 1972; Forkasiewicz and Paloc, 1967; Mangin, 1975); determine 

several indicators of the hydrodynamic functioning of the aquifer (Mangin, 1975); and provide 

information on flows, drainage, and the degree of karstification (Drogue, 1972; Mangin, 1975; Kullman, 

2000; Malik, 2006; Kresic, 2007; Malík and Vojtková, 2012). 

Our review of the literature on recession analysis identified a number of models (Boussinesq, 1878; 

Maillet, 1905; Horton, 1933; Barnes, 1939; Forkasiewicz and Paloc, 1967; Coutagne, 1949; Padilla et 

al., 1994; Mangin, 1970; Drogue, 1972; Malík and Vojtková, 2012). Initially, the objective was to 

identify one or more models adapted to karst hydrosystems, and to confirm or invalidate their 

suitability for developing a typology. The assessment focused on: 

• The versatility of the model, i.e. its ability to perform well in a variety of contexts; 

• The problem of equifinality, corresponding to the identifiability of parameters. Ideally, the 
model should have unique parameters for each type of curve. If this is not the case, it is 
necessary to try to obtain unique indicators on the basis of equivalent sets of parameters. 
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Figure 2: (A) Boxplot of errors relative to the different models for influenced and non-influenced flow regimes with respect 

to the observed discharge for all recessions. (B) Boxplot of Nash criteria resulting from the calibration of models over all 

observed recessions. 

An initial review identified four models that met the project’s requirements (Appendix A). All four were 

then tested and distinguished using dataset recessions (Appendix B), by examining their performance 

(Figure 2) and using sensitivity analyses (Appendix C). Three were found to be relatively successful, and 

relevant to the characterization of a system: the hyperbolic model (Drogue, 1972), the Padilla model 

(Padilla et al., 1994), and the Mangin model (Mangin, 1970). Several other avenues of research were 

also explored, including the development of a new model for the analysis of recession curves (see 

Section 5.2). 

The following indicators proposed by Mangin are widely used to characterize the functioning of karst 

hydrosystems: 

• k is used to characterize the capacity of a system to store and restitute precipitation; 

• i is used to characterize the capacity of a system to filter and attenuate the precipitation 
signal; 

• α is used to characterize the emptying of the capacitive part of the karst system. This 
indicator may include flows from both saturated and unsaturated zones, where in the latter 
a low degree of karstification may affect the response in the non-influenced regime 
(Mudarra and Andreo, 2011).  

The analysis of i values on recessions in the dataset revealed a relationship between the value of this 

indicator, and the saturation of the system (Appendix D). Variability in i can be explained by the size of 

water stored in the karst system at the time of the flood, by the overall organization of flows in the 

different compartments of the system, but also by the heterogeneity of precipitation and the size of 

the system. We therefore decided to take account of this variability (or lack thereof) in hydrological 

functioning within the typology, by including a new indicator based on the amplitude of i. 

2.3 Correlational and spectral analyses 

Correlational and spectral analyses are time series analyses that characterize a system (Larocque et 

al., 1998). Signal analyses, mainly developed by Jenkins and Watts (1968), Hannan (1970), Brillinger 
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(1975) and Box and Jenkins (1976), were applied to karst hydrology by Mangin (1984). They consist of 

(Massei et al., 2006): 

• Simple analyses. The simple analysis of a signal consists of calculating its autocorrelation 
function and the corresponding spectrum (obtained using a Fourier transformation). The 
principle is to compare the signal with itself over an increasingly increasing time interval 
(shift) (Jeannin and Sauter, 1998);  

• Cross-analyses. Cross-analyses examine the transformation of the input signal into an 
output signal (Padilla and Pulido-Bosch, 1995). 

Karst systems have a memory that is a function of the size of the reserves, and the extent to which the 

aquifer shows karstification (Mangin, 1984). Each system can, thus, be characterized by its response 

time to a unitary impulse (rain) and its inertia. 

With respect to simple analyses, Mangin (1984) defined three indicators based on correlogram and 

spectrum analyses: 

• The memory effect. This is the shift k for an autocorrelation coefficient rk of 0.2. It translates 
variation in discharge over time, and is directly related to system inertia (Marsaud, 1997); 

• The regulation time. This is the inverse of the bandwidth, i.e. the maximum ordinate of the 
spectrum divided by the integral of the function between 0 and +∞ (equal to 2). It provides 
information on the duration of the influence of a unitary pulse (Larocque et al., 1998; Kovács, 
2003) on the volume of reserves (Marsaud, 1997), and makes it possible to assess the overall 
organization of flows in the system (ducts, fractures, and cracks) (Jeannin and Sauter, 1998); 

• The cut-off frequency. This corresponds to the frequency f at which the value of the spectrum 
sf becomes negligible. Beyond this frequency, the spectrum is equal to zero, and can be 
assimilated to noise (Jeannin and Sauter, 1998). The cut-off frequency provides information 
on the ability of the system to filter unitary pulses (Marsaud, 1997). 

This method is based on the whole flow time series. Consequently, the results have global scope, and 

allow the interpretation of overall system flows. The indicators proposed by Mangin (1984) summarize 

the global functioning of a system, and take into account several aspects: 

• The inertia of the system and its capacity to filter precipitation; 

• The overall organization of flows in the system; 

• The importance of water reserves. 

Although this analysis provides a general idea of how a system works, it cannot highlight particular 

characteristics since it is based on the entire series. 

Finally, the regulation time (which is correlated with the memory effect) was considered for inclusion 

in the typology. This is a relevant indicator to characterize the overall inertia of a system, as it takes 

into account the whole series, and is based on the discharge autocorrelation function. 

2.4 Analysis of classified spring discharges 

The analysis of classified spring discharges provides information on flow regimes within a system, 

based on discharge measures at the outlet (Marsaud, 1997). The analysis consists of representing the 

spring discharge as a function of the percentage of time it is exceeded (Malík, 2015). The method 

makes it possible to identify particular events inherent in karst hydrology, i.e. an overflow, leakage to 

another system, storage and emptying phenomena, the presence of a fluctuating impluvium and, 
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potentially, the ability to check the quality of the gauging station (Grasso and Jeannin, 1994; Marsaud, 

1997; Dörfliger, 2010). 

Table 4: Interpretation of the inflexion point for classified spring discharges, showing low and high percentage (or both) 

inflexion points. The numbering of α follows the discharge axis, i.e. from left to right. 

Case Slope of the 
line 

Location of the 
inflexion point 

Interpretation 

A α1 < α2 

High percentages 

- Overflow 

- Leak to another system 

- Temporary storage 

- Leakage or overflow of the gauging station during high waters 

B α1 > α2 
- Contributions from another system 

- During floods, the gauging station takes into account flows that 
do not belong to the system. 

C α1 > α2 
Low percentages 

- Contribution of a reserve from an earlier cycle 

D α1 < α2 - Constitution of a reserve 

E 
α1 < α2 
α2 > α3 

Dual change 
- Trapping of a reserve as water recedes, and restitution during 

drying up 

 

Drawing on empirical observations, Mangin (1971) suggested that the distribution of discharge from 

karst springs or their logarithm can be approximated by a half-normal Gaussian distribution. He 

concluded that the comparison of quantiles for measured spring discharges with quantiles given by 

this reference distribution should follow a straight line. According to this theory, any anomalies 

indicate inhomogeneity in the operation of the system, below or above a certain range of discharge. 

The interpretation proposed by Mangin is based on an extremely strong hypothesis, which is that the 

statistical distribution represents reality. 

The interpretation is based on the identification of discontinuities or anomalies, corresponding to an 

inflexion point for classified spring discharges. Such changes can occur at low or high discharges, and 

may be positive or negative (Table 4). 

This method provides information that complements that supplied by other methods and was, 

therefore, considered for the identification of specific system functions (e.g. the activation of an 

overflow outlet). 

3 Application of the methods to the dataset 

3.1 Statistical analyses 

Statistical indicators provide an initial assessment of the functioning of a system. The following 

indicators are considered relevant in characterizing a karst system: 

• Mean interannual discharge, which is a function of the size of the catchment and mean 
precipitation; 

• The COV, which is a scaled indicator that allows systems to be compared on the basis of 
their general flow dynamics; 

• Observed minimum and maximum discharges, which make it possible to understand the 
flow amplitude. However, significant uncertainty is associated with this indicator, due to 
uncertainty relating to the extrapolation of extreme discharges; 

• SVC is a scaled indicator that provides information on flow variability, and is less biased by 
extreme values; 
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• The specific discharge makes it possible to take the dimensions of the system into 
consideration. This indicator requires knowledge of the size of the catchment. It is, 
therefore, not always available and is dependent on the quality of hydrogeological studies. 

It is most suitable to use scaled indicators, such as the COV, the SVC, and the specific discharge, when 

comparing systems. However, the mean interannual discharge may be needed to assess certain 

characteristics of hydrodynamic functioning. 

The results of the selected statistical indicators are presented in Table 5. 

 

Table 5: Basic spring discharge indicators for the studied systems. 

System Mean 
discharge 

m3/ s 

Coefficient of 
variation 

% 

Minimum 
discharge 

m3/ s 

Maximum 
discharge 

m3/ s 

SVC 
 

Specific 
discharge 

mm/ j 

Aliou 0.45 190.4 0 28.91 32.1 3.20 
Baget 0.49 147.2 0.02 10.10 14.0 3.22 
Durzon 1.63 60.7 0.69 17.80 3.3 1.20 
Esperelle 1.06 147.3 0.11 23.30 11.7 1.01 
Fontaine-de-Nîmes 0.54 228.0 0 18.09 40.2 1.03 
Fontaine-de-Vaucluse 17.54 71.3 2.79 85 5.9 1.36 
Lods 1.00 131.4 0.15 11.72 20.0 2.48 
Mouline 0.51 47.8 0.19 4.67 2.6 1.36 
Mouthe 1.92 125.4 0.01 19.50 25.4 3.31 
Toulon 0.48 37.0 0.25 0.96 2.5 0.41 

3.2 Analysis of recession curves 

3.2.1 Methodology 

The flow dynamics of karst systems are highly variable and mainly depend on their structure and size. 

A karst system can be characterized into one of two categories based on its dynamics: 

• intra-day: the system is reactive, with rapid variation in discharge, of the order of an hour; 

• multi-day: the system has high inertia and variation in discharge that can be measured on 
a daily basis. 

In order to optimize resolution, the hourly time step was used where possible, but a daily time step 

was used when hourly time steps were not possible. The length of dataset series varied from a single 

decade to several decades (Table 6). Three series recorded daily data and seven recorded hourly data. 

Recession curves were selected from the overall series with no consideration given to the period 

(seasonal or infra-annual recession), with the following conditions: 

• The peak flood discharge must be high (at least one tenth of the maximum in the flow time 
series); 
• There should be little or no disruption during the recession (i.e. precipitation leading to 
untimely peaks). In cases where the disruption was of short duration, data could be removed and 
replaced with a blank; 
• The recession must be complete, in other words, it should include both the influenced regime 
and the entire non-influenced regime (with some tolerance for high-inertia systems). 
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Table 6: Details of flow time series used for the studied systems. 

System 
Time series dates 

Time step 
Start End 

Aliou 1970-01-10 2014-12-31 daily 

Baget 1968-04-25 2015-09-29 daily 
Durzon 2010-12-03 2019-11-30 hourly 
Esperelle 2011-12-08 2019-11-30 hourly 
Fontaine-de-Nîmes 1998-10-28 2017-08-17 hourly 
Fontaine-de-Vaucluse 1966-01-02 2020-04-26 daily 
Lods 2013-10-01 2020-02-20 hourly 
Mouline 2010-12-09 2019-12-01 hourly 
Mouthe 2013-01-01 2020-04-02 hourly 
Toulon 2016-02-03 2018-08-02 hourly 

 

In the specific case where system flow was affected by a hydrodynamic operation (e.g. the activation 

of an overflow outlet), and was visible on the recession curve (as an inflexion point), we selected the 

last, unaffected part of the curve, including the dry-off. This approach ensured that the models, which 

cannot take account of inflexion points, were correctly calibrated. Information loss was relatively 

minor, as discharges that were excluded from the analysis only represented a tiny part of the overall 

flow. 

3.2.2 Results 

The tested recession models performed well, and led to the identification of several indicators. An 

innovative recession model, currently under development (see Section 5.2), appears to very promising 

in terms of performance and system characterization. Pending finalization of this model, we 

recommend the use of the Mangin model, which can characterize both influenced and non-influenced 

regimes. 

The analysis of the influenced regime provided values for i, which characterizes the capacity of a 

system to filter precipitation. Results for the studied systems (Figure 3(A)) clearly differentiate among 

systems, and are consistent with the values found in the literature. The amplitude of i values in certain 

systems highlights the variability in their hydrological functioning. 

The analysis of the non-influenced regime provided values for k, which characterizes the capacity of a 

system to store and restitute precipitation. Again, results for the studied systems (Figure 3(B)) clearly 

differentiate among systems, and are consistent with values found in the literature. 

The parameter α, derived from the exponential equation, characterizes the emptying of the capacitive 

part of the karst system (Figure 3(C)). This information is important in the development of a typology, 

as it can distinguish systems based on flow dynamics. 
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Figure 3: Results for each of the indicators proposed by Mangin (1984) using the recessions for each of the studied systems: 

(A) i, (B) k, and (C) α. 

 

3.3 Correlational and spectral analyses 

3.3.1 Methodology 

Mangin (1984) defined two types of analysis: 

• Short-term analyses, with a sampling step of 1 day and a maximum offset m of 125 days (∼ 
n/3 with n = 365); 

• Long-term analyses, with a sampling interval of 10 days and a maximum offset m of 1250 days. 

Long-term analysis requires fairly long time series (10 years). Out of the data available for the study, 

only two series (out of a total of ten) and 61% of the WoKaS class A data (Olarinoye et al., 2020) 

complied with this condition. We therefore decided to carry out short-term analyses to enable the 

comparison of as many systems as possible. 

As the systems included in the dataset are all subject to a similar climate, the starting date for the flow 

time series was set as the beginning of the hydrological cycle (1 September). This allowed the analysis 

to take account of seasonality. 

3.3.2 Results 

The results of correlational and spectral analyses highlighted the diversity of hydrological functions in 

the studied systems (Figure 4, Table 7). The three indicators proposed by Mangin (1984) made it 

possible to quantify this functioning, and it was thus possible to distinguish the following categories 

on the basis of our results: 

• Very reactive systems, with almost no filtration capacity. These systems rapidly transmit a 
response that is proportional to the intensity and duration of unitary pulses (precipitation). 
The Aliou and Mouthe systems fall into this category, with a memory effect of under 10 days, 
a regulation time of under 15 days, and a cut-off frequency above 0.4 day−1; 

• Low-inertia systems, which, although notably less reactive than those detailed above, still have 
fast response times. The Baget, Fontaine-de-Nîmes, and Lods systems fall into this category, 
with a memory effect of 10–20 days, a regulation time of 15–25 days, and a cut-off frequency 
of 0.3–0.4 day−1; 

• Medium-inertia systems are able to filter a greater-or-lesser proportion of unitary pulses. This 
class encompasses a wide variety of behaviors, ranging from reactive to high-inertia systems. 
The Durzon, Esperelle, and Mouline systems fall into this category, with a memory effect of 
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20–50 days, a regulation time of 25–50 days, and a cut-off frequency of 0.2–0.3 day−1. The 
Esperelle differs from the other two systems as values are towards the lower limits of the class, 
indicating greater reactivity; 

• High-inertia systems have high filtration capacity. The Fontaine-de-Vaucluse and Toulon 
systems fall into this category, with a memory effect of over 50 days, a regulation time of over 
50 days, and a cut-off frequency of under 0.2 day−1. The high inertia of these systems may be 
due to low karstification, the complexity of the system architecture, or the system size. The 
high inertia of the Fontaine-Vaucluse system can be explained by the large surface area of its 
catchment, estimated to be over 1000 km2 (Blavoux et al., 1992). The Toulon system, defined 
as a complex by Lorette et al. (2018), is a multi-layer aquifer, with flow that is permanently 
supported by the confined aquifer part of the system. 

 

Figure 4: Autocorrelation function (A) and variance density spectrum (B) analyses of flow time series for the studied 

systems. 

Within a category, the variability of an indicator can characterize the specific functioning of a system 

(especially systems with medium or high inertia), which can be explained by general knowledge of the 

system, such as its catchment, geology, hydrodynamic functioning, and precipitation regime. 

Table 7: Results of correlational and simple spectral analyses for the studied systems. 

System 
Memory effect 

day 
Regulation time 

day 
Cut-off frequency 

day−1 

Aliou 4.6 11.2 0.41 
Baget 17.6 24.4 0.34 
Durzon 49.1 40.0 0.24 
Esperelle 25.8 28.4 0.25 
Fontaine-de-Nîmes 13.2 21.8 0.33 
Fontaine-de-Vaucluse 81.4 67.8 0.13 
Lods 12.6 22.1 0.36 
Mouline 53.0 40.8 0.265 
Mouthe 7.3 10.7 0.415 
Toulon 101.7 85.8 0.08 
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3.4 Analysis of classified spring discharges 

The analysis of classified flows characterizes specific behaviors of karst systems. The method is difficult 

to implement, and requires prior knowledge of the system or field observations. We propose a 

methodology in the form of a large-scale typology. The aim is to simplify the analysis, and use it to 

identify the major, specific behaviors that characterize each system. We believe that this 

interpretation complements the results of the typology, as it provides information that is considerably 

different from that of other analyses. 

3.4.1 Methodology 

Given the global nature of our work, and the large number of systems under consideration, it was not 

possible to confirm our interpretations with field observations. Therefore, the analysis was designed 

to benefit from the advantages of the method, while minimizing interpretation uncertainties. Details 

are given below: 

• Estimates of drought discharges are subject to a high degree of uncertainty, which can 
mean that inflexion points are difficult to interpret. Moreover, the analysis lacks rigor, 
given the almost deterministic evolution of these discharges (Mangin, 1975). We 
therefore decided to filter flow time series and only retain discharges above Q90 
(corresponding to the discharge that is exceeded 90% of the time); 

• In the case of flood discharges and, more specifically, very high discharges, it is very 
difficult to distinguish an unusual behavior from an unreliable measurement. Therefore, 
it is generally better to exclude data that corresponds to ungauged discharges in order to 
improve the robustness of the interpretation. Therefore, we did not take into account 
discharges that exceeded the cumulative percentage threshold of 99.9%. 

The objective was to identify the presence or absence of major system behaviors, and avoid any over-

interpretation, and the following were differentiated (Figure 5): 

• Systems with no apparent, particular behavior (A); 

• Systems in which the hydraulic or flow properties changed beyond a certain discharge. 
This interpretation is characterized by an inflexion point at low percentages, when a given 
slope is followed by a less steep slope (B); 

• Systems in which an overflow outlet is activated, there is flow to another system, or the 
temporary storage of water occurs above a certain discharge. This interpretation is 
characterized by an inflexion point at high percentages, when a given slope is followed 
by a steeper slope (C). 

 

Figure 5: Proposed interpretation of the results of the classified spring discharges analysis: (A) No major specific behaviors; 

(B) Change in the hydraulic or flow properties of the system; and (C) Activation of an overflow outlet, flow to another 

system, or temporary storage of water. 
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3.4.2 Results 

The results of the analysis are presented in Appendix E. 

4 Proposal of a typology based on the selected indicators 

4.1 Analysis of the dataset using hierarchical partitioning methods 

The purpose of data clustering is to identify clusters that contain observations or objects with similar 

characteristics (Jain et al., 1999; Govender and Sivakumar, 2020). Clustering analysis can be used to 

identify archetypes, and offer a better understanding of the structure within a dataset (Halkidi, 2001). 

This technique is considered unsupervised, because it is not based on predefined classes or examples 

that would give an idea of the structure of the dataset (Berry and Linoff, 1996). 

4.1.1 Methodology 

Assessment of the dataset and selection of indicators 

The selection criterion for the ten studied systems was that there should be variation in hydrological 

functioning to ensure a representative population. The sample contains no extreme data that could 

influence the results of the analysis. There was, nevertheless, an important bias linked to the sample 

size (n = 10), which is important to consider when interpreting the results. 

Indicators were selected based on the literature review (here, the aim was to retain indicators with a 

particular physical meaning). A second consideration was the analysis of results for each method and 

principal component analyses (to identify complementary indicators and avoid duplication). The 

following six indicators were selected: 

• Mean interannual discharge (Qmean). This indicator takes into account the size of the 
catchment, which has an impact on the inertia of the system and its response to outflow; 

• The coefficient of variation (COV). This indicator provides information on the reactivity of 
the system, and the distribution of its flows; 

• Mean α (αmean). This indicator characterizes the emptying of the capacitive part of the 
karst system and, by extension, its contribution to the flow; 

• The maximum observed value of k (kmax). This indicator characterizes the maximum 
capacity of the system to store and release precipitation; 

• The maximum observed value of i (imax). This indicator characterizes the maximum 
capacity of the system to attenuate the precipitation signal; 

• The standard deviation of i (isd). This indicator characterizes the variability of the 
hydrodynamic functioning of a system. 

Data were centered-reduced because the means and standard deviations of indicators varied widely. 

Choice of the measure of similarity or dissimilarity 

The choice of the measure of dissimilarity or similarity is a function of the context of the study, the 

nature of the dataset, and the clustering method (Gower and Legendre, 1986). The best choice is a 

combination of experience, skills, knowledge, and luck (Gan et al., 2007). 
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As the dataset was reliable, with no extreme values and little noise, the Euclidean measure of 

dissimilarity (the most widely used method), was selected (Gan et al., 2007; Govender and Sivakumar, 

2020). It has been found to be appropriate for data with no extreme values and the average measure 

of dissimilarity has been shown to be most effective for ‘simple’ and ‘average’ distance hierarchical 

partitioning methods (Shirkhorshidi et al., 2015). In our study, the final result of testing was identical 

for both the Euclidean or average dissimilarity measure. 

The Euclidean distance between two points x and y of a d-dimensional dataset is calculated as follows 

(Gan et al., 2007): 

     (3) 

where xj and yj are the values of the jth attribute of x and y, respectively. 

Choice of clustering method 

A good knowledge of the data and indicators relating to the karst systems can avoid the need for 

complex methods, and facilitate the system-specific interpretation of results. This study aimed to 

define a number of classes that distinguish karst systems and identify the indicators that can be used 

to discriminate between the different clusters. A hierarchical partitioning method was selected to 

associate the branches of the dendrogram with physical system characteristics. Hierarchical 

partitioning methods have the following advantages compared with non-hierarchical methods 

(Govender and Sivakumar, 2020): 

• It is not necessary to know the number of clusters prior to the analysis; 

• The results do not depend on the choice of initial centers (Tufféry, 2011), which is a 
problem with non-hierarchical partitioning methods; 

• The graphical representation (dendrogram) provides an understanding of the cluster 
structure and how they are connected; 

• The method is suitable for clusters of different sizes and shapes. 

The main disadvantages are as follows:  

• the long processing time;  

• the difficulty of determining the number of relevant clusters after analysis (Govender and 
Sivakumar, 2020).  

However, given the small size of our dataset, and the fact that we have good knowledge of both 

systems and indicators, these disadvantages do not represent a particular constraint. 

There are several hierarchical partitioning methods, the most common being single-link, complete link, 

group average, weighted group average, Ward, centroid and median. We selected the Ward method, 

which is known to be effective (Milligan and Cooper, 1987), and which corresponds best to the concept 

of clustering (Tufféry, 2011). Our choice was confirmed by testing the different methods on the dataset 

and assessing the results. This showed that most of the methods were biased by the Fontaine-de-

Vaucluse system, which has a high mean discharge compared with the others. 

Ward’s hierarchical partitioning method is as follows: 

1. Each observation is considered as an initial cluster; 
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2. Distances between each cluster are calculated; 
3. Clusters are merged. The algorithm consists of merging all possible combinations of 
clusters and retaining the one that minimizes inter-cluster inertia; 
4. Steps 2 and 3 are repeated until only one cluster, which contains all observations, 
remains. 

The Ward distance between two clusters A and B that have centers of gravity a and b and frequencies 

nA and nB is equal to: 

     (4) 

The result of the analysis is presented in the form of a dendrogram. 

4.2 Results and interpretation 

Figure 6 shows the hierarchical partitioning result in the form of a dendrogram, and the interpretation 

of the different nodes. Firstly, systems are discriminated on the basis of their reactive or inertial nature, 

which includes their capacity to filter, store, and restitute rainfall. This distinction is essentially 

reflected by the indicators kmax, COV, and imax. In the second step, subgroups are identified for each 

type of system: 

• Reactive systems: The first node in the reactive systems branch is explained by the 
contribution of the capacitive part of the system to the flow. It is possible to distinguish: 
(i) systems in which the capacitive part has a weak influence, or where the contribution 
to the flow is weak (Aliou and Mouthe); and (ii) systems in which the capacitive part 
makes an important contribution to the flow (Fontaine-de-Nîmes, Lods, Baget, and 
Esperelle). Two indicators make it possible to discriminate between these two clusters: 
αmean and imax. αmean characterizes the average dynamics of the emptying of the capacitive 
part of the system, and imax has very low values in systems where the capacitive part of 
the system makes little contribution. Although i characterizes the contribution of flows 
linked to the influenced regime, it is indirectly affected by flows coming from the 
capacitive part; 

• Inertial systems: The first node of the inertial systems branch discriminates between 
large systems (Fontaine-de-Vaucluse) and small or medium systems (Toulon, Mouline, 
Durzon). This distinction is based on Qmean, which corresponds to the mean interannual 
discharge, and which is proportional to the size of the system; 

o Small/medium sized inertial systems: The second node of the inertial systems 
branch discriminates between small and medium-sized systems based on 
variation in their hydrodynamic functioning. It distinguishes stable and regular 
systems (Toulon) from systems in which there is variation in hydrodynamic 
functioning depending on the saturation of the system (Mouline, Durzon). This 
distinction is revealed by isd, the standard deviation of indicator i. 

We decided to interpret the second node of the inertial systems branch (Toulon, Mouline, and Durzon), 

and not the second node of the reactive systems branch (Fontaine-de-Nîmes, Lods, Baget, and 

Esperelle), despite the fact that the latter further reduces inter-cluster inertia. This choice was justified 

by the physical significance of the selected nodes, and their relevance within the framework of a 

typology. The Class 2 cluster (Fontaine-de-Nîmes, Lods, Baget, and Esperelle) has a first node that 

discriminates between two groups of systems: Fontaine-de-Nîmes and Lods/Baget/Esperelle. This 

difference can be explained by the high coefficient of variation of Fontaine-de-Nîmes (228.0%) 
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compared with the others (131.4%, 147.2%, and 147.3%, respectively). This information is irrelevant 

in the context of the typology, as it introduces more complexity without adding any major 

characteristics.  

Thus, the analysis made it possible to: 

• Identify indicators that can differentiate karst systems: k, i, α, regulation time, the 
coefficient of variation, and the mean interannual discharge; 

• Assess possible classes in the dataset. They can initially be discriminated based on their 
reactive or inertial character, then (i) as a function of the emptying of the capacitive part 
of the system for reactive systems, and (ii) as a function of the mean interannual flow and 
variability in hydrodynamic operation for inertial systems. 

 

Figure 6: Hierarchical partitioning of the systems in the dataset based on the six selected indicators, showing a detailed 

interpretation of nodes, and the contribution of indicators to the differentiation of systems. 
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4.3 The proposed typology 

4.3.1 Establishing the typology 

Our results and tests of various indicators that could potentially differentiate the ten systems led to 

development of a proposed typology. It seems that the inertia of a system (its capacity to filter 

precipitation) is a characteristic that is independent of its capacity to store and restitute precipitation. 

In other words, systems with relatively high inertia can have a low or a high water-storage capacity. 

An exception occurs when storage capacity is high, in which case the system will necessarily be inertial. 

Thus, the best approach seems to be to initially differentiate systems based on their capacity to store 

and restitute precipitation and then, in a second step, to observe the inertial character of their 

hydrodynamic functioning. 

Contrary to the hypothesis put forward in the context of hierarchical partitioning analysis, it does not 

seem relevant to use the mean interannual discharge (Qmean) in the classification because this approach 

introduces unnecessary complexity into the typology, and considerably increases the number of 

classes to be defined. However, it should be noted that, for large systems, the interpretation of 

indicators may be biased by the size of the basin, the heterogeneity of rainfall, or the homogenization 

of responses. 

Definition of classes 

Five classes were chosen to represent the dataset and discriminate systems based on their functioning. 

Increasing this number did not lead to further differentiation of the remaining systems based on their 

major operating characteristics. 

This study, thus, distinguished five main types of karst systems: 

1. A class of systems with very low to low storage capacity, in which the capacitive part of 
the system: (i) is small and poorly developed; (ii) contributes little or nothing to run-off; 
or (iii) drains quickly. A high level of karstification allows rapid water transfer; 

2. A class of systems with a low to medium storage capacity, in which the capacitive part of 
the system is moderately developed and empties moderately. A high level of 
karstification allows rapid water transfer; 

3. A class of systems with a low to medium storage capacity, in which the capacitive part of 
the system is moderately developed and empties moderately. Low to medium 
karstification is consistent with a relatively homogeneous response; 

4. A class of systems with moderate to high storage capacity, in which the hydrodynamic 
response is influenced by the saturation of the system. There is a high level of 
karstification, and different compartments are called upon as a function of periods of high 
and low water; 

5. A class of systems with a moderate to high storage capacity, in which the hydrodynamic 
response is relatively homogeneous. These are small- to medium-size systems with little 
or no karstification, or large, complex systems. 

Thus, the studied systems fall into the following classes: 

• Class 1: Aliou, Mouthe; 

• Class 2: Baget, Esperelle, Fontaine-de-Nîmes, Lods; 

• Class 3: /; 

• Class 4: Durzon, Mouline; 
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• Class 5: Fontaine-de-Vaucluse, Toulon. 

Characterization of system inertia 

The inertial nature of a system and its flow regime are expressed by indicators such as i, the regulation 

time, the coefficient of variation, or the SVC. The regulation time appears to be the best indicator to 

characterize overall system inertia as it considers the whole series and is based on the discharge 

autocorrelation function. 

The analysis of our dataset highlights a very good relationship between the proposed classes and 

regulation time (Table 8): 

• Class 1 (Aliou, Mouthe) has regulation times around 10 days; 

• Class 2 (Baget, Esperelle, Fontaine-de-Nîmes, Lods) has regulation times between 20 and 
30 days; 

• Class 4 (Durzon, Mouline) has regulation times of about 40 days; 

• Class 5 (Fontaine-de-Vaucluse, Toulon) has regulation times of more than 70 days. 

For systems with low storage capacity (Classes 1, 2, and 3), regulation time is function of the 

contribution of the capacitive part of the system to flow and the degree of karstification. For systems 

with high storage capacity, it is: (i) low to medium for systems with highly variable hydrodynamic 

operation (Class 4); and (ii) high for stable, regular systems (Class 5). 

Example: Regulation times for the four systems in Class 2 are consistent with their known reactivity. 

According to the literature, and the results of our analyses, it is possible to order them based on their 

reactivity – Fontaine-de-Nîmes, Lods, Baget, and Esperelle – with Fontaine-de-Nîmes being the most 

reactive system, and Esperelle the least reactive. The Fontaine-de-Nîmes, Lods, Baget, and Esperelle 

systems have regulation times of 21.8, 22.1, 24.4, and 28.8, respectively. This order, based on 

regulation time, corresponds to values reported in the literature and results from other indicators. 

Thus, regulation time seems to be the best indicator to characterize the inertia of systems because it 

reflects the overall functioning of a system. We therefore propose that it should be used to refine the 

interpretation once the class has been defined. 

Table 8: Values of indicators for the studied systems. 

System  kmax imin αmean Regulation time Class 

Aliou  0.02 0.04 0.063 11.2 1 
Baget  0.18 0.26 0.014 24.4 2 
Durzon  0.72 0.19 0.004 40.0 4 
Esperelle  0.16 0.19 0.011 28.4 2 
Fontaine-de-Nîmes  0.08 0.20 0.012 21.8 2 
Fontaine-de-Vaucluse  0.4 0.84 0.005 67.8 5 
Lods  0.08 0.06 0.012 22.1 2 
Mouline  0.60 0.05 0.004 40.8 4 
Mouthe  0.02 0.04 0.041 10.7 1 
Toulon  0.98 0.54 0.002 85.8 5 
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4.4 Methodology for classifying a system based on indicator values 

Next, we turn to the indicators that best-characterize each class. We can define the following rules: 

• Classes 1, 2, and 3 are differentiated from Classes 4 and 5 by kmax; 

• Class 1 is differentiated from Classes 2 and 3 by αmean;  

• Class 2 is differentiated from Class 3 by imin; 

• Class 4 is differentiated from Class 5 by imin. 

imin is preferred to isd because it is more robust, and is less biased by the number of recessions. The 

flowchart, presented in Figure 7, shows the methodology for classifying a karst system based on the 

results of the various analyses. It consists of considering values for different indicators in a logical 

order: 

1. kmax: this differentiates systems with a very low to medium storage capacity (Classes 1, 2 and 
3) from systems with moderate to high capacity (Classes 4 and 5); 

o If kmax ≤ 0.4 the value of αmean: this differentiates Class 1 from Classes 2 and 3; 
▪ If αmean > 0.03 the value of imin: this differentiates Class 2 from Class 3; 

o If kmax > 0.4 the value of imin: this differentiates Class 4 from Class 5. 

Regulation time complements the classification methodology, as it provides an intra-class 

differentiation of systems based on the inertial character of their hydrodynamic operation. Finally, the 

analysis of classified spring discharges highlights the presence (or not) of a major, specific behavior. 
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Figure 7: Diagram of the methodology for classifying a karst system based on indicators developed form analyses of flow 

time series. 

4.5 Validation of the typology and the analysis methodology 

System overview 

In order to validate the methodology and the proposed classes, analyses were run on four other karst 

systems. Three are located in France (Cents-Fonts, Homede, and Boundoulaou), and one in Lebanon 

(Qachqouch). 
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Results 

The results of the analyses, presented in Table 9, make it possible to classify the four systems on the 

basis of the methodology presented in Figure 7. 

Table 9: Value of indicators for the studied systems. 

System kmax imin αmean Regulation time Class 

Cent-Fonts 0.27 0.23 0.007 28.2 2 
Qachqouch 0.15 0.08 0.034 32.5 1 
Homede 0.27 0.23 0.009 37.1 2 
Boundoulaou 0.34 0.20 0.009 41.0 2 

 

The Cents-Fonts system belongs to Class 2 with kmax ≤ 0.4, αmean ≤ 0.03, and imin ≤ 0.4. Its regulation 

time of 28.2 corresponds to an average value for this class. 

The Qachqouch system belongs to Class 1 with kmax ≤ 0.4, and αmean > 0.03. Its regulation time of 32.5 

corresponds to a high value for this class. 

The Homede system belongs to Class 2 with kmax ≤ 0.4, αmean ≤ 0.03, and imin ≤ 0.4. Its regulation time 

of 37.1 corresponds to a high value for this class. 

The Boundoulaou system belongs to Class 2 with kmax ≤ 0.4, αmean ≤ 0.03, and imin ≤ 0.4. Its regulation 

time of 41.0 corresponds to a high value for this class. 

Thus, the Qachqouch system is classified as a system with a high level of karstification, allowing rapid 

water transfer, very low to low storage capacity, and a capacitive part of the system that is: (i) small 

and poorly developed; (ii) contributes little or nothing to runoff; or (iii) drains rapidly. However, the 

system has a relatively inertial operation, with a high regulation time for its class. 

Cents-Fonts, Homede, and Boundoulaou are classified as systems with a high level of karstification, 

allowing rapid water transfer, low to medium storage capacity, and with a moderately developed 

capacitive part that drains moderately. The analysis of the regulation time suggests medium inertia for 

the Cents-Fonts system, and high inertia for the Homede and Boundoulaou systems. 

This classification is consistent with descriptions found in the literature and studies carried out on each 

system (Ladouche et al., 2006; Moussu, 2011; Dubois et al., 2020). 

4.6 Application of the typology to a large number of systems 

Systems 

In order to further check the relevance of the typology, and its capacity to differentiate karst systems, 

the classification methodology was tested on a dataset of 78 karst systems, with different 

characteristics (e.g. size of the catchment, rainfall regime, climate, and degree of karstification). Thirty-

four systems are in France, and data were downloaded from a database provided by the French state 

(Banque Hydro). The other 44 were taken from the WoKaS database (Olarinoye et al., 2020) and are 

distributed throughout the world. 
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Results 

The results of the analyses, presented in Appendix F and Figure 8, enabled systems to be ranked based 

on the methodology presented in Figure 7 (n = 78): 

• Class 1: 19 systems 

• Class 2: 31 systems  

• Class 3: 7 systems 

• Class 4: 11 systems 

• Class 5: 9 systems 

A total of 57 systems have a kmax ≤ 0.4, corresponding to very low to medium storage capacity (Classes 

1, 2, and 3). The other 20 have higher storage capacity (Classes 4 and 5). Class 2 is most represented, 

which is unsurprising given that it corresponds to the archetype of karst: a system with low to medium 

storage capacity, with moderate emptying of the capacitive part of the system, and a considerable 

degree of karstification. 

 

Figure 8: Graphical representation of the studied systems and their class, with kmax on the y-axis and regulation time on the x-

axis. 

 

Regulation time was used to differentiate between systems based on the overall inertial character of 

their operation. The distribution of values is consistent between classes (Figure 9). Mean regulation 
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time increases for Classes 1, 2, and 3, which is logical given the physical description of these systems. 

The same applies to Classes 4 and 5, although the differentiation is less marked. 

 

Figure 9: Boxplot of the regulation time of the studied systems within each class of the typology. 

5 The future development of the typology 

5.1 Using an existing model and the parameters of the equation 

5.1.1 The Padilla model 

The direct interpretation of α and n in the Padilla model is not particularly useful because of the 

problem of equifinality. However, Qc systematically converges to a single value and can be used for 

interpretation. Our research led to the development of two indicators that represent influenced and 

non-influenced regimes. In order to evaluate their relevance, they were compared with Mangin’s 

indicators, i and k. 

Influenced regime 

The influenced regime can be characterized, like Mangin’s i, by observing the value of the model t days 

after the flood peak, expressed as a relative proportion of the flood discharge. To ensure consistency, 

Qc, which may correspond to a low discharge associated with flows in the saturated zone, was 

subtracted from the obtained discharge to examine the part of the discharge corresponding to the 

influenced regime. Appendix G shows recession curves for all studied recessions, simulated with the 

Padilla model by subtracting the discharge Qc. The most relevant distribution of the model’s values 

corresponds to the time t = 3 days; at this point, values can be distinguished, and are representative 

of the operation of the system. 

p characterizes the capacity of the system to filter precipitation. It is calculated as: 
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      (5) 

The results are in agreement with Mangin’s indicator i (Appendix H, graphs (B), (D) and (F)), except for 

the Toulon system, where values are considerably lower, and therefore inconsistent with the operation 

of the system. 

The R2 was 0.915 and Kendall’s coefficient was 0.855, indicating good agreement between the two 

indicators. 

Like i, p is a function of the saturation of the system, and variability in the results can measured by a 

new indicator, based on the standard deviation of p. 

Non-influenced regime 

Although Qc does not necessarily have any particular physical meaning, values are consistent with the 

hypothesis that this discharge corresponds to discharge from areas of the system with low 

transmission. To a certain extent, it can be used to characterize the non-influenced regime, i.e. the 

storage and restitution capacity of reserves, by evaluating the ratio of Qc to the mean interannual 

discharge. 

qcm is calculated as follows: 

        (6) 

The results are approximately consistent with Mangin’s k (Appendix H, graphs (A), (C) and (E)).  

The R2 was 0.818 and Kendall’s coefficient was 0.657, indicating good agreement between the two 

indicators. 

5.1.2 The hyperbolic model 

It is possible to consider the direct interpretation of α and n in the hyperbolic model, as there are no 

equifinality problems. However, the analysis of the derivative and the distribution of parameters in the 

different systems (Appendix I) highlights some limitations: 

• α and n seem to be interdependent. The consequence is that the amplitude of α is large, and 
the distribution of parameters is inconsistent (i.e. for the fdn system: α is very low and n is high); 
• System differentiation seems to be negligible compared with the results obtained with the 
Mangin indicators. 

The analysis of the derivative is as follows: 

     (7) 

      (8) 
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5.2 Improving an existing model 

Section 2.2 compared and identified three models (hyperbolic, Mangin, and Padilla). All three can 

correctly simulate recession in karst hydrosystems. In the context of our study, the hyperbolic and 

Padilla models are most useful, because they do not require any action on the part of the user (unlike 

the Mangin model, which requires the definition of the inflection point). Our work therefore focused 

on the former two models. 

An analysis of the performance of the hyperbolic model (Figure 2) highlights that it struggles to 

reproduce both influenced and non-influenced regimes. This, together with a visual analysis of poor 

calibrations (Appendix J), indicates the following weaknesses: 

• The model fails to reflect ‘intermediate’ discharges, located in the hollow of the curve; 

• The model produces an over-estimation of the fall in the non-influenced regime, which 
leads to an under-estimation of the discharge at the end of the recession limb. 

These weaknesses were addressed by adding Qc, following the approach adopted by Padilla et al. 

(1994) to address the Coutagne (1949) equation: 

      (9) 

where Q0 is the discharge at time t = 0, α is the recession coefficient, n is a constant that is a function 

of the geometry of the catchment. Although Qc has no particular physical meaning, it can, nevertheless, 

be assimilated to a discharge from aquitards outside the karst system, or the discharge in zones where 

transmission is low within the aquifer. In order to maintain a certain degree of coherence with any 

potential physical reality, we defined Qc ≥ 0. 

5.2.1 Performance of the new model 

Results from the proposed model (called the Qc-hyperbolic model) are very good with a relative error 

of 5.1% for fast flows, and 5.9% for slow flows. The mean Nash criterion was 0.984 (Figure 10). These 

results show that adding a new parameter to the hyperbolic equation considerably improves the 

model’s performance. A visual analysis of recession curves confirms that the weaknesses initially 

identified in the hyperbolic model are corrected by the addition of Qc (Appendix K). 

Sensitivity analyses highlighted slight equifinality issues with respect to α and n, which may make direct 

interpretation difficult. 

5.2.2 Ways forward for the typology 

Use of parameters in the Qc-hyperbolic model  

The model’s parameters lack reliability, and are not sufficiently consistent for direct use in 

characterizing the operation of a system. The distribution of α and n in the new model (Appendix L) 

does not reveal a clear trend that would allow matching of these parameters to system characteristics. 
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Influenced regime 

 

Figure 10: (A) Boxplot of errors related to the Qc-hyperbolic model compared with those in the hyperbolic, Padilla, and 

Mangin models for influenced and non-influenced regimes, with respect to the observed discharge over all recessions. 

(B) Boxplot of Nash criteria resulting from the calibration of the different models over all observed recessions. 

Like p in the Padilla model, it is possible to define an indicator (h for the Qc-hyperbolic model) by taking 

the model value t days after the flood peak, expressed as a percentage of the flood discharge. Qc, which 

may correspond to low discharge associated with flows in the saturated zone, is subtracted from the 

obtained discharge in order to characterize the part of the discharge corresponding to the influenced 

regime. Appendix M shows recession curves for all of the studied recessions simulated with the Qc-

hyperbolic model, by subtracting the discharge Qc. Performance is best at time t = 2 days. At this point, 

values can be distinguished, and are representative of the operation of the system.  

h is calculated as follows: 

     (10) 

The results obtained are consistent with how systems are known to function, and very similar to those 

obtained for the Mangin model (Appendix N). The correlation between h and i is excellent, with R2 of 

0.908 and a Kendall coefficient of 0.863. 

Like i, h is a function of the saturation of the system, and variability in results can be modeled by a new 

indicator, based on the standard deviation of h. 

Non-influenced regime 

Characterization of the functioning of the saturated zone with the Qc-hyperbolic model proved to be 

difficult. In some cases, Qc is null, making the indicator unusable. Several ways forward are being 

studied with the objective of being able to analyze the non-influenced regime and characterize the 

storage and restitution of precipitation. 
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5.3 Approximation of indicators found in the literature 

We also sought to assess whether the indicators proposed by Mangin (1975) could be approximated 

by simple indicators. The idea was to simplify an existing approach by removing the need to calibrate 

recession models, while maintaining consistent results. 

Influenced regime. Mangin’s i characterizes the capacity of a system to filter rainfall. Like p and h, it 

can be approximated by dividing the discharge at time t = 2 days by the initial peak flood discharge. 

This approach is similar to the calculation of i, with the difference that the entire discharge is 

considered, unlike the calculation of i, which is only based on the part of the discharge corresponding 

to the influenced regime. 

The results are very interesting (Appendix O, graphs (B), (D), and (F)). The R2 was 0.912 and the Kendall 

coefficient was 0.806. 

Like i, variability in the results can be modeled by a new indicator based on the standard deviation of 

the initial indicator. 

Non-influenced regime. Mangin’s k (1975) characterizes the capacity of a system to store and restitute 

precipitation. It corresponds to the ratio of the dynamic volume to the mean interannual volume, the 

dynamic volume being calculated from the drying coefficient α from the exponential model. In some 

ways, this coefficient, which characterizes the emptying of a reservoir with low transmissivity, is a 

function of the length of the recession under consideration, and the discharge at the end of the drying 

period. 

The ratio of the end-of-drying discharge to the mean interannual discharge is similar to Mangin’s k 

(Appendix O, graphs (A), (C) and (E)). The R2 was 0.887 and the Kendall coefficient was 0.738, indicating 

good agreement between the two indicators. 

5.4 Analysis of electrical conductivity series at the outlet of systems 

The analysis of electrical conductivity series may supplement information derived from analyses of 

flow time series. Although, like discharge, conductivity can be measured with autonomous probes at 

high frequency, there are far fewer instrumented systems, making it difficult to base a typology on the 

analysis of electrical conductivity. Nevertheless, as series were available for nine of the ten systems in 

our dataset, this analysis was able to be conducted. 

5.4.1 State-of-the-art 

Electrical conductivity is the ability of a solution to conduct an electric current (Hubert and 

Wolkersdorfer, 2015). It is a function of the concentration of gases and dissolved elements (Pelkie et 

al., 1992), along with colloids and suspended solids (McNeil and Cox, 2000) and is affected by 

temperature, pressure, discharge, and any dissolved elements (McNeil and Cox, 2000). It is expressed 

as µS/cm or mS/cm, and is influenced by the following parameters: 

• temperature, which affects the mobility of ions in solution. Conductivity measurements are 
only comparable if they are converted to the same reference temperature (Hubert and 
Wolkersdorfer, 2015), usually 25°C; 

• the valence and mobility of each ionic species (McNeil and Cox, 2000), i.e. their specific 
electrical conductivity. A change in the distribution of dissolved species (facies) can change 
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electrical conductivity without necessarily modifying the total concentration, by changing 
ion ratios (Marandi et al., 2013). 

Table 10: Conductivity indicators for the studied systems. 

System Average 
conductivity 

µS/cm 

Coefficient of 
variation 

% 

Minimum 
conductivity 

µS/cm 

Maximum 
conductivity 

µS/cm 

Amplitude 
 

µS/cm 

Baget 326.5 3.4 243 372 129 
Durzon 429.5 4.7 376 486 110 
Esperelle 452.4 2.7 399 487 88 
Fdn 918.7 28.5 479 2528 2049 
Fdv 447.7 5.5 360 496 136 
Lods 538.9 5.3 431 643 212 
Mouline 408.1 4.8 317 477 160 
Mouthe 335.9 8.8 206 415 209 
Toulon 580.5 2.2 518 601 83 

 

The range of variation in electrical conductivity differs as a function of the hydrosystem under 

consideration. It is mainly a function of the size of the catchment and the degree of karstification. 

These factors partly shape the length of time water remains and, therefore, its degree of 

mineralization. 

5.4.2 Analysis of the dataset 
Table 10 and Appendix P present the results of our statistical analyses. 

Conclusion 

The various methods used to analyze discharge time series at the outlet of karst systems can 

characterize several aspects of their operation. The analysis of recession curves is a particularly 

appropriate way to distinguish influenced and non-influenced flow regimes of spring discharge, and 

many authors have proposed typologies based on this method. 

The first aim of our study was to identify ways to update existing typologies: 

• Our examination of different recession models identified that several would be useful in the 
development of a typology. One way forward is to integrate variability in the hydrodynamic 
functioning of a system in order to differentiate stable, regular systems from systems in 
which saturation or the distribution of precipitation impacts hydrodynamic functioning; 

• The inclusion of indicators from correlational and spectral analyses can refine the 
classification obtained from the analysis of recession curves, and characterize overall 
system inertia; 

• The classified spring discharge analysis helps to identify specific system functions, such as 
the activation of overflow outlets and a change in flow properties. We propose a generic 
method, which aims to simplify the analysis and identify the presence or absence of major 
specific behaviors and system characteristics. 

In a second step, we tested our proposed typology on a large dataset made up of systems distributed 

around the world. Here, the objective was to observe the distribution of systems within classes, and 

to study the influence of climate. Our results show that the typology is robust, and can clearly 

differentiate between systems. 
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Our proposed typology appears to be a relevant way to characterize karst systems, based on the study 

of flow time series. We are already looking at numerous options for further work: 

• The development of a recession model that does not require operator intervention. The 
objective is twofold: to reduce bias, and to reduce the execution time for the analysis; 

• The inclusion of hydrochemical aspects, through the analysis of conductivity and 
temperature series. In general, although fewer series are available, conductivity can be 
monitored at high frequency; 

• The examination of climate and mean precipitation based on the study of climate at 
different scales (from the Köppen–Geiger classification to the analysis of rainfall measures). 

Finally, the medium-term objective is to link the classification of karst systems and modeling their 

functioning. This would help in the design of models, and limit the choice of parameters.  
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Appendices 

A Summary of the main models used to analyze recession curves. ‘✓’ indicates that the model was selected 

and ‘☓’ indicates that the model was not selected. 

Model Equation Selection Comment 

Boussinesq 
(1903) 

𝑄𝑡 =
𝑄0

(1 + 𝛼𝑡)2
 ☓ 

- non-influenced stage 
- Surface water 

Maillet (1905) 𝑄𝑡 = 𝑄0ⅇ−𝛼𝑡 ☓ 
- non-influenced stage 
- Surface water 

Horton (1933) 𝑄𝑡 = 𝑄0ⅇ−𝛼𝑡𝑛
 ☓ - More suitable to surface water 

Barnes (1939) 𝑄𝑡 = ∑ 𝑄0ⅇ−𝛼𝑖𝑡

𝑛

𝑖=1

 ☓ 
- More suitable to surface water 
- Hard to automate 

Coutagne 
(1948) 𝑄𝑡 = 𝑄0[1 + (𝑛 − 1)𝛼0𝑡]

𝑛
(1−𝑛) ✓ + Karst systems 

Padilla et al. 
(1994) 𝑄𝑡 = (𝑄0 − 𝑄𝑐)[1 + (𝑛 − 1)𝛼0𝑡]

𝑛
(1−𝑛) +  𝑄𝑐 ✓ 

+ Karst systems 
+ Qc strengthens Coutagne model 

Drogue (1972) 𝑄𝑡 =
𝑄0

(1 + 𝛼𝑡)𝑛
 ✓ + Karst systems 

Mangin (1975) 𝑄𝑡 = 𝑄𝑅0
ⅇ−𝛼𝑡

+ 𝑞0

1 − 𝜂𝑡

1 + 𝜀𝑡
 ✓ 

+ Karst systems 
+ Exisiting typology 
- Bias linked to user assessment 

Kullman (1990) 𝑄𝑡 = ∑ 𝑄0𝑖ⅇ−𝛼𝑖𝑡

𝑛

𝑖=1

+ ∑ (
1

2
+

|1 − 𝛽𝑗𝑡|

2(1 − 𝛽𝑗𝑡)
) 𝑄0𝑗(1 − 𝛽𝑗𝑡)

𝑛

𝑗=1

 ☓ 

+ Karst systems 
+ Exisiting typology 
- Hard to automate 

 

B Selected recession curves for each dataset. 
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C Example of the results of the overall sensitivity analysis for four recession models for a recession in the 

Baget system (for the period 1977-08-29 to 1977-11-13). 

 

D Variability in i for the studied systems. The ratio of discharge in the month preceding the flood to the 

mean interannual discharge (Q1M) was centered-reduced to allow comparison among systems. 
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E Analysis of classified discharges for the studied systems showing the interpretation of the curve as a 

function of the proposed methodology. 
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F Indicators for the dataset of 78 karst systems, sorted by class and regulation time. 

 

System kmax imin αmean 
Regulation 

time 
Class  System kmax imin αmean 

Regulation 

time 
Class 

CN_0024 0.01 0.02 0.187 6.5 1  SI_0011 0.16 0.12 0.024 12.6 2 

HR_0018 0.12 0.03 0.057 10.2 1  SI_0021 0.07 0.10 0.022 12.7 2 

US_0074 0.02 0.34 0.055 10.2 1  CH_0027 0.10 0.13 0.021 12.7 2 

mouthe 0.02 0.04 0.041 10.7 1   HR_0020 0.07 0.10 0.021 15.4 2 

aliou 0.02 0.04 0.063 11.2 1  balastie 0.06 0.27 0.023 17.3 2 

AL_0013 0.02 0.09 0.095 11.9 1  serre 0.09 0.23 0.017 19.5 2 

IE_0022 0.01 0.07 0.074 13.5 1   US_0072 0.33 0.05 0.013 20.6 2 

SI_0004 0.06 0.15 0.045 13.8 1  fdn 0.08 0.20 0.012 21.8 2 

SI_0002 0.06 0.17 0.047 14.5 1  lods 0.08 0.06 0.012 22.1 2 

HR_0017 0.03 0.07 0.050 15.1 1  RS_0009 0.07 0.23 0.023 22.3 2 

PE_0003 0.04 0.05 0.067 18.4 1  baget 0.18 0.26 0.014 24.4 2 

HR_0011 0.02 0.00 0.161 20.9 1  HR_0005 0.13 0.14 0.019 24.7 2 

GB_0028 0.06 0.00 0.086 23.9 1  aiguebel 0.28 0.34 0.009 25.6 2 

roquaizo 0.13 0.19 0.034 29.8 1  cf 0.27 0.23 0.007 28.2 2 

qachqouch 0.15 0.08 0.034 32.5 1  esperelle 0.16 0.19 0.011 28.4 2 

US_0077 0.03 0.13 0.089 33.5 1  dragonni 0.18 0.34 0.014 30.3 2 

stpierre 0.03 0.12 0.031 / 1  CN_0020 0.07 0.27 0.022 30.5 2 

lez 0.17 0.44 0.076 / 1  barbade 0.20 0.34 0.024 30.7 2 

CN_0019 0.03 0.06 0.081 / 1  chartreu 0.16 0.20 0.013 31.2 2 

FR_0057 0.07 0.07 0.087 / 1  HR_0010 0.22 0.33 0.007 33.4 2 

PR_0005 0.54 0.07 0.007 5.6 4  lestang 0.13 0.33 0.013 33.8 2 

gloriett 0.42 0.16 0.006 15.8 4  homede 0.27 0.23 0.009 37.1 2 

cernon 0.67 0.20 0.005 31.1 4  boundoulaou 0.30 0.33 0.009 41.0 2 

US_0039 0.64 0.24 0.006 32.8 4  SI_0010 0.05 0.11 0.019 41.6 2 

fousette 0.79 0.11 0.006 37.8 4  duc 0.07 0.10 0.021 42.9 2 

durzon 0.72 0.19 0.004 40.0 4  douz 0.34 0.28 0.011 48.6 2 

mouline 0.60 0.05 0.004 40.8 4  ES_0002 0.11 0.37 0.020 49.0 2 

HR_0002 0.61 0.05 0.006 42.8 4  buza 0.28 0.22 0.014 49.8 2 

HU_0001 0.74 0.19 0.004 49.3 4  PR_0001 0.28 0.00 0.008 51.0 2 

US_0041 2.43 0.31 0.001 57.3 4  adoux 0.25 0.12 0.012 57.1 2 

US_0075 3.72 0.21 0.001 71.0 4  PE_0005 0.15 0.20 0.027 / 2 

FR_0074 0.85 0.61 0.003 33.9 5  HR_0012 0.22 0.68 0.010 29.5 3 

HR_0006 0.41 0.58 0.005 35.7 5  segala 0.15 0.50 0.014 37.9 3 

taillade 0.56 0.54 0.006 38.3 5  GB_0023 0.07 0.57 0.018 42.8 3 

DE_0012 1.13 0.74 0.002 44.4 5  AU_0003 0.18 0.45 0.007 47.0 3 

CN_0021 0.96 0.86 0.002 51.7 5  IE_0018 0.35 0.64 0.009 53.4 3 

PE_0004 0.73 0.97 0.004 53.5 5  taurin 0.14 0.57 0.010 61.4 3 

CN_0018 1.06 0.53 0.002 58.3 5  ES_0021 0.09 0.67 0.016 75.7 3 

fdv 0.40 0.84 0.005 67.8 5       

toulon 0.98 0.54 0.002 85.8 5       
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G All studied recessions simulated with the Padilla model. For each recession, the discharge was divided by 

the initial discharge to allow comparison among systems. 
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H Boxplot showing the results of indicators (A) k and (C) qcm, and (B) i and (D) p. (E) and (F) show the 

correlation between indicators from the Padilla model and Mangin indicators. 
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I Distribution of α and n in the hyperbolic model for the studied systems. 

 

J Example of the weaknesses of the hyperbolic model for (A) Lods and (B) Mouline recessions. 
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K Example of the calibration of the Qc-hyperbolic model for (A) Lods and (B) Mouline recessions. 

 

L Parameters in the Qc-hyperbolic model: n as a function of α. 
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M All studied recessions simulated with the Qc-hyperbolic model. For each recession, the discharge was 

divided by the initial discharge to allow comparison among systems. 
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N Comparison of the results of (A) h and (B) i. (C) shows the correlation between the indicator from the Qc-

hyperbolic model and the Mangin indicator. 
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O Comparison of the results of (A) k and (C) discharge at the end of the recession limb divided by the mean 

interannual discharge, and (B) i and (D) discharge two days after the flood peak divided by the flood 

discharge. (E) and (F) show the correlation between statistical indicators and Mangin indicators. 
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P Conductivity probability density function (µS/cm) for the studied systems. 

 


