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Executive Summary

Work package 4 of the KARMA project focuses ondbeelopment and compaison oftransferable
modellingtools for improved predictionsoncerning the impacts of climate change, floods, droughts
and landuse danges on karstquifers In this contextthe application ofArtificial Neural Networks to
model karst spring discharge time serieslemonstrated in deliverable 4.Blodeling results from six
different test sites are shown by using an approach basee@onvolutional Neural Networks, which
have been shown to be fast and reliable for strongly related tasksh as groundwater level
predictions Using this approach, even for complex systems, highly accurate results can be achieved
with comparably littletime effort and only little prior knowledge about the system being necessary.
However, no deeper knowledge of the system can be derived from the model and in areas where too
few data are available, no satisfying results can be achieved.

Accompanying modelodes will bepublishedas part of deliverable 4.4
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2 Introduction

Modeling Karst water resources is challenging, because water flow is highly variable due to the
unknown conduit networks. Therefordarge variety of differeninodelingapproaches existgleannin

et al., 2021) most of them requimg a certain leveof background knowledge about the system in
order to achieve high quality results. In contrary, deep learning approacirede applied without
detailed system knowledge necessaby, being able to establish relationship between relevant
forcings, suchas climatic inputs, and outputsge. spring dischargeon their own.To date Artificial
Neural Networks (ANNgmain an exotic tool in the karst modeling community. Nevertheldiigrent

types of ANNs have been applied in modeling karst water reseuarequite a long timgwith the

study of Johannet et al. (1994)eing even one of the first applications of ANNs in water related
research.In the contex of the KARMA projecmainly ConvolutionalNeural Networks (CNNjre
applied to model karst spring discharge at several sites. Gbisbeen shown to be fast and reliable

for the closely related application of groundwater lefaecastingWunsch et al., 2028nd alschave

been rudimentarily applied to Karst spgirmodeling(Jeannin et al. 2021According to the study of
Wunsch et al. (2021), CNNs are significantly faabermore stabléhan other methods such and NARX
(nonlinear autoregressive models with exogenous inputs) and LSTM (longtesmortmemory
networks) and usually show similar or better accuracy in predictirgundwater levels, which makes
them the preferable approach for modeling karst spring dischafgeen though such data driven
approaches rely on a comparably large data basis and do usually not enhance system knowledge such
as lumped parameter models cdn, they area powerful tool to achieve high quality simulations in a
relatively short time.

All KARMA test sites were scanned for a suitable data basis to apply ANN modeling. Because of the fact
that gapless and as long as possible time series of lpthgsdischarge (target variable) and climatic
inputs (i.e. precipitation, temperature, etc.) have to be available, the Eastern Ronda Mountains test
site in Spaimndthe Gran Sasso test site in Italgre not suitable for ANN applicatioAlarge number

of data gaps and too short time series prevented ANN applicatidhese two areasThe Zaghouan

sitein Tunisia holds a somewhat unique position in this respect. On the one hand, the data are very
old and had to be digitized first, on the other hand, atam effort was made to generate input data

and thus build models, while the other sites were modeled with current and already existing
meteorological series. The modeling here was done exclusively by the local partner ENIT and therefore
includes some fuher analysis and a brief comparison of CNNs with two other types of models, namely
Multi-Layer Perceptron (MLP) and Long Sherin Memory (LSTM) modeld-or these reasons the
Zaghouan site is presented in separate sub topics in this report.

To compensa for the two unusabletest sitesin Spain and ltalyadditional alternative karst
areagspringswere used for ANN modelingp shat resultsfrom a total of six karst springs can be
presented:Aubach spring (HochifeGottesacker karst area) in Austria, lsgwing in France, Unica
springs in Slovenia, Gato cave spring in Sg@achgouch spring in Leban@md Nympheaspring
(Zaghouan area) in Tuniqiigurel). For descriptions of the study areas we refeeliverable 4.2
In thisreport we will focus on description of data, models and results.
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Figurel: Location of the karst springs modeled with AMNg carbonate outcrops aftt OKAMChen et al., 2017a)

3 Material and Methods

3.1 Available Data

Very different data were available for each site especially in terms of climatic parameters, temporal
resolution and available period.ablel gives a summary of the used data for each sttemetimes
more parameters, additional climate stations, other periods or even other temporal resolutions were
availableand have been testedTheuseddata represents a compromisd tongest avaihble time
period,as large as possible number of relevant parametansl model performance

Tablel: Data basis overview of all five modeled sites.

. . Temporal

Spring Period Resolution Input Parameters

Aubach 20122020 Hourly Precipitationtemperature and snow routine output for
climate stations Walmendinger Horn, Diedamskopf a
Oberstdorf. Additional Parameter: Tsin

Lez 20082019 Daily Precipitation (interpolated), Pradds-Lez climate
station: temperature

Unica 1961-:2018 Daily Postojna climate station: precipitation, pot.
evaporation, temperature, rel. humidity, snow, new
snow; Cerknica climate station: precipitation, snow,
new snow

Gato Cave 19702015 Daily Precipitation, temperature

Qachgouch 20152020 Daily Climate statioril (950m): temperature, rel. humidity;

climate station2 (1750m): temperature, precipitation,
evapotranspiration

In case of Aubach spring the discharge is significantly influenced by seasonal snow accumulation and
melting(Chen et al., 2017@nd no directly measured data about snowfall or snowmelt were available
Therefore a snowmelt routinés runas preprocessing of the meteorological input data as described in
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Chen et al. (2018)rhis routine is a slightly modified versi@iter Hock 1999bf the HBV hydrological
model snow routine (e.gBergstrom 1975, 1995; Seibert 2000; Kollat et al. 204B8)ch redistributes
the precipittion time series in accordance with probable snow accumulation and snowanelt
produces an additional input parameter for each climate statiSoch parameter can potentially
replace the original precipitatiomput; however, the performance of the mod&las better when
including both the original and the redistributed precipitatiddther test sites either had snow data
from cimate stationsavailable ¢.g.Unica) or are not (significantly) influenced ssyowaccumulation
andsnowmelt €.g.Lez). This ialso shown in Deliverable 4.2, wergr@cipitationredistribution using
this snow routine for all sites is performed as@nificantredistribution can be observednly for
Aubach and Unica

In somecasesANN models can profit from artificial input déteat provides information on the season
and therefore the current position in the annual cyclterefore the influence of a sinus signal input
fitted to the temperature curve (Tsinwhich is known from experience to often improve modeling
results,is tested For one of the five sites (Aubach spring) such input provided improved performance
andwastherefore alsoused

3.2 AvailableData and Preprocessingaghouan Site

In our ANN modelling approach, the data used are:rtteteorologicalinput data or exogeous data

to the karst and the output datddischarge)or endogenous dataThe input data considered are
rainfall, mean temperature and pressure on a daily scale. The rainfall data considered are those of the
"Zaghouan controle" station (latitude: 36.3958@ngitude: 10.14917) which extend from 1915 to
1944. However, there are gaps in the data for the entire year of 1929 and January 1930. These gaps
were filled by a linear interpolation using data from the nearby station "Zaghouan SM" (latitude:
36.40306jongitude: 10.14472(Figure2).

Figure2: Location of study rainfall stations

This data treatment allows us to obtain the entire series of daily and weekly cumulative rdtigah
3andFigured).
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Figure3: Daily rainfall from 1915 to 1944 at Zaghouan contréle station
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Figure4: Cumulative weekly rainfall from 1915 to 1944 at Zaghouan contr6le statio

A statistical description of the weekly rainfall series gives us the following fEdidep). It can be seen

that the first quartile for weekly series is equal to 0 mm, which is explained by the low number of rainy
days, 77 day per year (this is most noticeable for the daily series). Indeed, Zaghouan is located in a
semtarid zone. In addition to the rainfall data used as input, we used a synthetic daily and weekly
series of median temperature and pressure values, as data 1@ib to 1943 are not available at the
moment. This synthetic series was built up from temperature and pressure data from 1943 to 2008
from the Oued EIl Kebir darnkigure5 shows the different percentiles on a weekly and daily scale.
Subsequently, we considered the median and repeated it several times to obtain our weekly and daily
temperature and pressure series.
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Figure5: Synthetic temperatur@eft) and pressuréright) series from 1943 to 2008
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The digharge series at the source of the Nymphea is the output. The discharge is the result of the
hydrodynamic transformation of the input data by the karst, in our case the rainfall. Since we only have
discharge series in graphical form from 1915 to 1944ragirlar time scales, our first task has been to
digitize these discharge datdhis digitalization allowed us to obtain a complete, continuous, and
regular discharge series on a weekly scale (fig 7). The discharge on a daily scale were obtained by linear
interpolation, as was done in the work 8agng2000 andFaydi(2021). As with our climatic series,

we considered statistical analysis and understanding before modelling. As a result, we obtain the
following descriptivelrable2.

Weekly discharge
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100000.00
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60000.00
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40000.00
20000.00

0.00
23-10-14 01-12-18 0S-01-23 17-02-27 28-03-31 06-05-35 14-06-39 23-07-43
Date

Figure6: Weekly discharge from 1915 t844

Table2: Statistical description of the rainféléft) and discharge (right)me series.

Rainfall Weekly Daily Discharge Weekly Daily
Number of rainfall values 1,514 10,592 Number ofdischargevalues 1514 10592
Mean (mm) 11.7 14 Mean discharge (m3/day) 6,984 6,987
Standard deviation 20.1 55 Standard deviation (m?/day) 7,151 7,159
Min (mm) 0 0 Min discharge (m3/day) 216 216
25% quarte (mm) 0 0 25 % quartile (m3/day) 3605 3,606.7
50% quartile (mm) 3.7 0 50 % quartile (m3/day) 5337 5350.3
75% quartile (mm) 14.3 0 75 % quartile (m3/day) 5337 76315

Max (mm) 168.4 117.3 Max discharge(m3/day) 98,530 98530
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3.3 Convolutional Neural Networks

Convolutional Neural NetworkdeCun et al., 201%re a common tool in object recognition, image
classification and signal processing. The general structure usually uses sequencesgaidieiking

of several layerswvhich aregypicallyatleast oneconvolutional layer and a pooling lay&hedimension

of the data predefinethe dimension of the @anvolutionallayers (1D in case of time seri¢lsat use

filters with a fixed size (kernel size, receptive figtdproduce a certain number déature maps of the

input data Often a larger number of filters is useshch of them recogniing different input data
characteristics (features). Afterwards downsampling and therefore information consolidation is
performed in a pooling layer. A wide ran@f model structures based on these blocks are possible.
Usually additional layers to prevent, for example, exploding gradients (e.g. using batch normalization
layers) or overfitting of the model (e.g. using dropout layers) are also used within such block
sequencesOften long shorterm memory networks are preferred over ALNNs because they are by
definition not prone to the vanishing gradient problem, nevertheless we have shown in earlier studies
(Wunsch et al., 2021hat for groundwater modeling 1{TNNs are superior because they are faster,
often show higher pedrmance and furthermore qoduce reliably stable results.

We use an ensemble of 10 models to reduce the dependency of the model on the random initialization
of the layer weights and calculate 100 forecasts for each of these 10 models based on aQddote
dropout approach, whictare usedto derive the95%model uncertaintyinterval. Each of the used

CNN models follows the general design showRigure7. Hyperparameters are derived as described

in the following sectionPython 3.§van Rossum, 199and the following frameworks and libraries are
used to implement all models: TensorFlow atsdKeras ARAbadi et al., 2015; Chollet, 201 5umpy

(van der Walt et al., 2011PandagMcKinney, 2010; Reback et al., 2028¢ikitLearn(Pedregosa et

al., 2011) Unumpy(Lebigot, 201Q)Matplotlib (Hunter, 2007)and Bayesia®ptimization(Nogueira,
2014)

Dense
1D-CNN [
O Dense
— O (Output) o
2 1Dconv | | El] 2]| & [|O =
=] - = = @®
a —» Layer 8 3 s O |§| —»> 5
£ o [m] LS 0N
O 3

Figure7: CNN model design used to simulate karst spring discharge

3.4 Model Calibration and Evaluation

While training, optimiingand testing the modebata leakagés preventeddy splitting thetime series

of each site into four parts of which the largest part is used for training, a smaller part for early stopping
to prevent overfitting the mode{validation), andwo other parts as test set during optimization and

as final test set to evaluatthe model performancéTable3).

Table3: Time series splitting for each test site for model training, optimization and testing

Training Validation Optimization Testing
Aubach 11/2012-2017 2018 2019 1/202010/2020
Lez 10/20082015 2016 2017 2018+2019
Unica 1961-08/2012 09/201210/2014 11/201409/2016 10/20162018
Gato Cave 1970:08/2003 09/200308/2007 09/2007-08/2011 09/2011-05/2015

Qachqgouch  09/201509/2018 10/201802/2019 02/2019-09/2019 10/201901/2020
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Further, Bayesian optimizatios usedo derive the length of the input sequence (search spasgée
dependent), the batch size{® 2%) during training, the number of filteiia the 1DConv laye(2* to

28), and the number of neuronis the firs dense layef2*to 28). These hyperparameters are

optimized on model performance in terms of mean squared efobjective function)n the

optimization setWhile the kernel size was set to 3 for all of the models, the dropout rate was chosen
site depemently (as high as possible with meaningful resugisleast 10% as well as the number of
training epochs, the early stopping patieresed the number of Bayesian optimization stépable

4). We mostly perform at least 50 optization steps and stop either when 80 steps are reached or
after no improvement for 10 steps (Stop Criteria).

Table4: Manually chosen Hyperparameters.

Dropout Training Early Stoppinc Bayesian OjppmizationSteps

Rate Epochs Patience (Min/Max/Stop Criteria)

Aubach 10% 200 20 50/80/10
Lez 50% 200 15 25/50/10
Unica 10% 100 10 50/80/10
Gato Cave 50% 100 10 50/80/10
Qachgouch 10% 500 20 50/80/10

To evaluate the performance of the models, several metrics are calculated: Negclfife Efficiency
(NSE)YNash and Sutcliffe, 1970quared Pearson r (R?), root mean squared error (RMSE), Bias (Bias)
as well as KlinguptaEfficiency (KGEBupta et al., 2009)or squared Pearson r the notation of the
coefficient of determination (R¥s used becausethe linear fit between simulated and observed
discharge, thus of a simple linear modelcomparedwhich makes them equal in this casaurther,
individual performance on high, medium and low flow were investigated using mainly RMSE and Bias.
Especially, NSE and KGE seem rather unintuitive for such evaluation, because the referenéervalues
calculatbn change, which makes comparison and interpretation difficult. The thresholds to distinguish
between high/medium and medium/low flow are defined as the 90% quantile of Q and 40% of the
mean Q value, respectively.

3.5 Alternative Approack Zaghouan Site

3.5.1 ANNModels

In a comparative modelling approach, we considered three types of ANN models:|djatti
perceptron (MLP), Long Sheferm Memory (LSTM) and Convolutional Neural Network (CNN). In
addition, in order to characterize the most suitable time scaleforsystem, we performed daily and
weekly simulations for each model. For each temporal approach, a simulation configuration has been
adopted: it consists in predicting a single future value of flow knowing only the data on rainfall, average
temperature aml pressure of the previous days. This configuration is called "seq2val forecasting" or
"one-step ahead forecasting'In order to prevent overfitting, we used the "dropout" regularization
method which consists in randomly disactivating some neurons at isaxetion.

The MLP model is a model consisting of interconnected neurons. It has hidden layenseofdhs
each and a linear output layer consisting of one negkamgA-Siou et al., 20150ur MLP model
consists of two hidden layer anche linear output neuron.
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The LSTM model is a recurrent neural network model. It uses stochastic approximation through
sequential time series. It consists of several cells; each cell comprising the input gate, the output gate
and the forget gate. The LSTivbdel incorporates previous predictions into current predicti@vi®ah

et al., 2021)Our LSTM model consists of an LSTM layer that is connected by a linear output neuron.

Mostly used in image recognition and classification, convolutional neural networks find their use in the
prediction of continuous sitpls such as source flowEhe typical structure of a CNN is already
described in SectioB.3.

3.5.2 Simulation and Evaluation Approach

The input data for our models are rainfall, temperature and pressure; the output data is theudjsch

at the source of the Nymphe&ur modelling consists of two phases: a calibrati@mning phase and

an evaluation phase. According to this distribution, we have split our data. Thus, 85% (24 years) of the
data will be used in the calibration phasedabb% (4 years) of the data in the evaluation phisgure

8). Furthermore, in view of the nature of the activation functions and in order to guarantee a better
distribution of the data and to facilitate predictions, we have starttized our data between 0 and 1.

This operation has the merit of improving the performance of our mo(&sinker et al., 1996)
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Figure8: Daa splittingat Zaghouan &

Our different models have hyperparameters which are the guiding part of the simulations. However,
it is not obvious to find the optimal combination of hyperparameters. Therefore, we used Bayesian
optimization (Nogueira, 20140 ensure optimal performance. We used the acquisition function
"expected improvement" or (El); the function to be maximized being: f (X) = NS&VtiRsch et al.,
2021)

The evaluation parameters of our models are: R?, NSE, Bias, RMSE, rRMSE, rBgis.tHé¢seu
parameters, we were able to compare our models and judge their predictive accuracy.



KARMA Data Management Plan

4 Results and Discussion

4.1 Aubach Spring (Austria)

The modeling results for thevaluation/test period (1/202€.0/2020) of the CNN model at Aubach

spring are shown iRigure9. Themodel was able to accurately model the spring discharge during most
periods of the test section with high NSE (0.82) and KGE (0.90) values. The second highest peak of the
whole time series occurs in February and i$yaslightly underestimated. The snowmdtfluenced

period from April to MidJune is accurately modeled as well as the peaks in summer and early autumn.

In October, a series of peaks can be observed that isvabbtaptured by the model output. A plausibl
explanation is that the input data does not capture the respective local precipitation glsenause

of the location of the climate stations outside of the catchment.

Aubach Spring

104

E?E ggg —— simulated mean
84 RMSE 0.51 —— observed

Bias -0.06 95% confidence
64 KGE 0.90

Q [m?/s]

YL

2020-01 2020-02 2020-03 2020-04  2020-05 2020-06  2020-07 2020-08 2020-09  2020-10 2020-11
Date

Figure9: Modeling results for Aubach spring in 20R@sted and dotted lines: thresholds to determine low, medium and high
flow.

Regarding the model performance for low, medium and high flow parts of the test period, RMSE and
Bias are shown ifiable5. While high and medium flow are sgshatically underestimated, low flow is
slightly overestimated. The RMSE is satisfiirgeneralandas expectedargest for the simulation of

the high flow peaks.

Table5: Low, medium and high flow evaluation of the model perforogeat Aubach spring.

RMSE [m3/s] Bias [m?3/s]

Total 0.51 -0.06
High Flow 1.01 -0.33
Medium Flow 0.43 -0.04
Low Flow 0.22 0.03

The model uncertainty is very low, especially compared to the discharge variability. Aubach spring
catchment, as part of th HochiferGottesacker karst system is complex and challenging to model with
conventional models such as lumped parameter models, due to high differences in altitude, and high
precipitation heterogeneity (including snow accumulation influence). Despitsettiacts and sub
optimal climate station positioning outside the catchment, the CNN model is able to satisfyingly and
accurately model the discharge time series. The relatively long time series with a very high temporal
resolution (hourly), on the otherdnd, are undoubtedly of great benefit to the model performance.
Overall, these results show that the chosen approach is powerful in modeling karst spring discharge,
given that relevant and highuality input data is present.



KARMA Data Management Plan

4.2 Lez Spring (France)

Figure 10 shows the modeling results for 2018 and 2019 at Lez spring in Frititesatisfying
performance measure values (NSE, KGE = 0.77, R2 = 0.78). Therigsi@ generalis characterized

by distinct dry periods without any rechargeealto anthropogenic water extraction in the saturated

zone of the aquifer. These periods are quite accurately simulatbith was achieved by usiagRelLu
activation function thatoes not allow negative output values and thas been implemented for the

output neuron instead of a classical linear activation. This makes learning zero output easier and agrees
with the physical understanding that negative output is not possible. During optimization however,
also a higher number of instabilities in termsfaifed training attemptsvas observedThese failures

were prone to a high sensitivity to the random number seed and could therefore be easily solved by
choosing different seeds, nevertheless, careful training observation seems to be necessary when using
ReLu activation output neurond-urther some inaccuracies in terms of underestimation of higher
discharge events (e.g. 12/2004/2019) and overestimation of smaller events in the first half of the
year 201%re observedThe model uncertainty interval degd from MonteCarlo dropout ensembles
significantly higher compared to Aubach spring; however, a significantly higher dropout rate of 50%
has been used. This on the one hand increases uncertainty, but on the other hand also makes training
more robust andvas chosen because no performance decrease compared to a lower dropout rate has
been observed for Lez spring.

Figurel0: Modeling results for Lez spring in 2018 and 2@kshed and dotted lines: thresholds to determine low, mmadi
and high flow.

Similarly as for Aubach sprirthe model systeratically underestimates high and medium flow, while
low flow periods are overestimateoh averagdTable6). However, low flow is not systematically too
high, but raher unprecise for some events. Longer periods of zero discharge are captured well.

Table6: Low, medium and high flow evaluation of the model performance at Lez spring.

RMSE [m3/s] Bias [m?3/s]

Total 0.59 -0.01
High Flow 1.02 -0.78
Medium Flow 0.61 -0.14
Low Flow 0.43 0.23

4.3 Unica Springs (Slovenia)

Unica springs discharge time series represents the joint discharge of severas $peitigg the Unica

river. The CNN model can profit from a very long data basis of daily(siata 1961)during training

and therefore shows high performance in terms of the error measures (NSE & R? > 0.85, KGE = 0.74),
capturing the major dynamic of the spring quite accuratéigyrell), despiteclimate input variables
























