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Executive Summary 
 

Work package 4 of the KARMA project focuses on the development and comparison of transferable 

modelling tools for improved predictions concerning the impacts of climate change, floods, droughts 

and land-use changes on karst aquifers. In this context, the application of Artificial Neural Networks to 

model karst spring discharge time series is demonstrated in deliverable 4.3. Modeling results from six 

different test sites are shown by using an approach based on 1D-Convolutional Neural Networks, which 

have been shown to be fast and reliable for strongly related tasks such as groundwater level 

predictions. Using this approach, even for complex systems, highly accurate results can be achieved 

with comparably little time effort and only little prior knowledge about the system being necessary. 

However, no deeper knowledge of the system can be derived from the model and in areas where too 

few data are available, no satisfying results can be achieved.  

Accompanying model codes will be published as part of deliverable 4.4.  
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2 Introduction 
Modeling Karst water resources is challenging, because water flow is highly variable due to the 

unknown conduit networks. Therefore a large variety of different modeling approaches exists (Jeannin 

et al., 2021), most of them requiring a certain level of background knowledge about the system in 

order to achieve high quality results. In contrary, deep learning approaches can be applied without 

detailed system knowledge necessary, by being able to establish a relationship between relevant 

forcings, such as climatic inputs, and outputs, i.e. spring discharge, on their own. To date, Artificial 

Neural Networks (ANN) remain an exotic tool in the karst modeling community. Nevertheless, different 

types of ANNs have been applied in modeling karst water resources for quite a long time, with the 

study of Johannet et al. (1994) being even one of the first applications of ANNs in water related 

research. In the context of the KARMA project mainly Convolutional Neural Networks (CNN) are 

applied to model karst spring discharge at several sites. CNNs have been shown to be fast and reliable 

for the closely related application of groundwater level forecasting (Wunsch et al., 2021) and also have 

been rudimentarily applied to Karst spring modeling (Jeannin et al. 2021). According to the study of 

Wunsch et al. (2021), CNNs are significantly faster and more stable than other methods such and NARX 

(nonlinear autoregressive models with exogenous inputs) and LSTM (long short-term memory 

networks), and usually show similar or better accuracy in predicting groundwater levels, which makes 

them the preferable approach for modeling karst spring discharge. Even though such data driven 

approaches rely on a comparably large data basis and do usually not enhance system knowledge such 

as lumped parameter models can do, they are a powerful tool to achieve high quality simulations in a 

relatively short time.  

All KARMA test sites were scanned for a suitable data basis to apply ANN modeling. Because of the fact 

that gapless and as long as possible time series of both spring discharge (target variable) and climatic 

inputs (i.e. precipitation, temperature, etc.) have to be available, the Eastern Ronda Mountains test 

site in Spain and the Gran Sasso test site in Italy were not suitable for ANN application. A large number 

of data gaps and too short time series prevented ANN application in these two areas. The Zaghouan 

site in Tunisia holds a somewhat unique position in this respect. On the one hand, the data are very 

old and had to be digitized first, on the other hand, a certain effort was made to generate input data 

and thus build models, while the other sites were modeled with current and already existing 

meteorological series. The modeling here was done exclusively by the local partner ENIT and therefore 

includes some further analysis and a brief comparison of CNNs with two other types of models, namely 

Multi-Layer Perceptron (MLP) and Long Short-term Memory (LSTM) models. For these reasons the 

Zaghouan site is presented in separate sub topics in this report.  

To compensate for the two unusable test sites in Spain and Italy, additional alternative karst 

areas/springs were used for ANN modeling, so that results from a total of six karst springs can be 

presented: Aubach spring (Hochifen-Gottesacker karst area) in Austria, Lez spring in France, Unica 

springs in Slovenia, Gato cave spring in Spain, Qachqouch spring in Lebanon and Nymphea spring 

(Zaghouan area) in Tunisia (Figure 1). For descriptions of the study areas we refer to Deliverable 4.2. 

In this report we will focus on description of data, models and results. 
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Figure 1: Location of the karst springs modeled with ANNs and carbonate outcrops after WOKAM (Chen et al., 2017a) 

3 Material and Methods 

3.1 Available Data 
Very different data were available for each site especially in terms of climatic parameters, temporal 

resolution and available period. Table 1 gives a summary of the used data for each site. Sometimes 

more parameters, additional climate stations, other periods or even other temporal resolutions were 

available and have been tested. The used data represents a compromise of longest available time 

period, as large as possible number of relevant parameters, and model performance. 

Table 1: Data basis overview of all five modeled sites. 

Spring Period 
Temporal 
Resolution 

Input Parameters 

Aubach 2012-2020 Hourly Precipitation, temperature and snow routine output for 
climate stations Walmendinger Horn, Diedamskopf and 
Oberstdorf. Additional Parameter: Tsin 
 

Lez 2008-2019 Daily Precipitation (interpolated), Prades-le-Lez climate 
station:  temperature 
 

Unica 1961-2018 Daily Postojna climate station: precipitation, pot. 
evaporation, temperature, rel. humidity, snow, new 
snow; Cerknica climate station: precipitation, snow, 
new snow 
 

Gato Cave 1970-2015 Daily Precipitation, temperature 
 

Qachqouch 2015-2020 Daily Climate station 1 (950m): temperature, rel. humidity; 
climate station 2 (1750m): temperature, precipitation, 
evapotranspiration 

 

In case of Aubach spring the discharge is significantly influenced by seasonal snow accumulation and 

melting (Chen et al., 2017b) and no directly measured data about snowfall or snowmelt were available. 

Therefore a snowmelt routine is run as preprocessing of the meteorological input data as described in 
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Chen et al. (2018). This routine is a slightly modified version (after Hock 1999) of the HBV hydrological 

model snow routine (e.g. Bergström 1975, 1995; Seibert 2000; Kollat et al. 2012), which redistributes 

the precipitation time series in accordance with probable snow accumulation and snowmelt and 

produces an additional input parameter for each climate station. Such parameter can potentially 

replace the original precipitation input; however, the performance of the model was better when 

including both the original and the redistributed precipitation. Other test sites either had snow data 

from climate stations available (e.g. Unica) or are not (significantly) influenced by snow accumulation 

and snowmelt (e.g. Lez). This is also shown in Deliverable 4.2, were a precipitation redistribution using 

this snow routine for all sites is performed and significant redistribution can be observed only for 

Aubach and Unica. 

In some cases, ANN models can profit from artificial input data that provides information on the season 

and therefore the current position in the annual cycle. Therefore, the influence of a sinus signal input 

fitted to the temperature curve (Tsin), which is known from experience to often improve modeling 

results, is tested. For one of the five sites (Aubach spring) such input provided improved performance 

and was therefore also used. 

3.2 Available Data and Preprocessing - Zaghouan Site 
In our ANN modelling approach, the data used are: the meteorological input data or exogenous data 

to the karst and the output data (discharge) or endogenous data. The input data considered are 

rainfall, mean temperature and pressure on a daily scale. The rainfall data considered are those of the 

"Zaghouan controle" station (latitude: 36.39583; longitude: 10.14917) which extend from 1915 to 

1944. However, there are gaps in the data for the entire year of 1929 and January 1930. These gaps 

were filled by a linear interpolation using data from the nearby station "Zaghouan SM" (latitude: 

36.40306; longitude: 10.14472) (Figure 2). 

 

Figure 2: Location of study rainfall stations 

This data treatment allows us to obtain the entire series of daily and weekly cumulative rainfall (Figure 

3 and Figure 4). 
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Figure 3: Daily rainfall from 1915 to 1944 at Zaghouan contrôle station 

 

Figure 4: Cumulative weekly rainfall from 1915 to 1944 at Zaghouan contrôle station 

A statistical description of the weekly rainfall series gives us the following table (Table 2). It can be seen 

that the first quartile for weekly series is equal to 0 mm, which is explained by the low number of rainy 

days, 77 days per year (this is most noticeable for the daily series). Indeed, Zaghouan is located in a 

semi-arid zone. In addition to the rainfall data used as input, we used a synthetic daily and weekly 

series of median temperature and pressure values, as data from 1915 to 1943 are not available at the 

moment. This synthetic series was built up from temperature and pressure data from 1943 to 2008 

from the Oued El Kebir dam. Figure 5 shows the different percentiles on a weekly and daily scale. 

Subsequently, we considered the median and repeated it several times to obtain our weekly and daily 

temperature and pressure series. 
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Figure 5: Synthetic temperature (left) and pressure (right) series from 1943 to 2008 

The discharge series at the source of the Nymphea is the output. The discharge is the result of the 

hydrodynamic transformation of the input data by the karst, in our case the rainfall. Since we only have 

discharge series in graphical form from 1915 to 1944 at irregular time scales, our first task has been to 

digitize these discharge data. This digitalization allowed us to obtain a complete, continuous, and 

regular discharge series on a weekly scale (fig 7). The discharge on a daily scale were obtained by linear 

interpolation, as was done in the work of Sagna (2000) and Faydi (2021). As with our climatic series, 

we considered statistical analysis and understanding before modelling. As a result, we obtain the 

following descriptive Table 2. 

 

 

Figure 6: Weekly discharge from 1915 to 1944 

 

Table 2: Statistical description of the rainfall (left) and discharge (right) time series. 

Rainfall Weekly Daily 

Number of rainfall values 1,514 10,592 
Mean (mm) 11.7 1.4 
Standard deviation 20.1 5.5 
Min (mm) 0 0 
25% quartile (mm) 0 0 
50% quartile (mm) 3.7 0 
75% quartile (mm) 14.3 0 
Max (mm) 168.4 117.3 

 

Discharge Weekly Daily 

Number of discharge values 1,514 10,592 

Mean discharge (m³/day) 6,984 6,987 

Standard deviation (m³/day) 7,151 7,159 

Min discharge (m³/day) 216 216 

25 % quartile (m³/day) 3,605 3,606.7 

50 % quartile (m³/day) 5,337 5,350.3 

75 % quartile (m³/day) 5,337 7,631.5 

Max discharge(m³/day) 98,530 98,530 
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3.3 Convolutional Neural Networks 
Convolutional Neural Networks (LeCun et al., 2015) are a common tool in object recognition, image 

classification and signal processing. The general structure usually uses sequences of blocks, consisting 

of several layers, which are typically at least one convolutional layer and a pooling layer. The dimension 

of the data predefines the dimension of the convolutional layers (1D in case of time series) that use 

filters with a fixed size (kernel size, receptive field) to produce a certain number of feature maps of the 

input data. Often a larger number of filters is used, each of them recognizing different input data 

characteristics (features). Afterwards downsampling and therefore information consolidation is 

performed in a pooling layer. A wide range of model structures based on these blocks are possible. 

Usually additional layers to prevent, for example, exploding gradients (e.g. using batch normalization 

layers) or overfitting of the model (e.g. using dropout layers) are also used within such block 

sequences. Often long short-term memory networks are preferred over 1D-CNNs because they are by 

definition not prone to the vanishing gradient problem, nevertheless we have shown in earlier studies 

(Wunsch et al., 2021) that for groundwater modeling 1D-CNNs are superior because they are faster, 

often show higher performance and furthermore produce reliably stable results. 

We use an ensemble of 10 models to reduce the dependency of the model on the random initialization 

of the layer weights and calculate 100 forecasts for each of these 10 models based on a Monte-Carlo 

dropout approach, which are used to derive the 95%-model uncertainty interval.  Each of the used 

CNN models follows the general design shown in Figure 7. Hyperparameters are derived as described 

in the following section. Python 3.8 (van Rossum, 1995) and the following frameworks and libraries are 

used to implement all models: TensorFlow and its Keras API (Abadi et al., 2015; Chollet, 2015), Numpy 

(van der Walt et al., 2011), Pandas (McKinney, 2010; Reback et al., 2020), Scikit-Learn (Pedregosa et 

al., 2011), Unumpy (Lebigot, 2010), Matplotlib (Hunter, 2007) and Bayesian Optimization (Nogueira, 

2014). 

 
Figure 7: CNN model design used to simulate karst spring discharge 

3.4 Model Calibration and Evaluation 
While training, optimizing and testing the model, data leakage is prevented by splitting the time series 

of each site into four parts of which the largest part is used for training, a smaller part for early stopping 

to prevent overfitting the model (validation), and two other parts as test set during optimization and 

as final test set to evaluate the model performance (Table 3). 

Table 3: Time series splitting for each test site for model training, optimization and testing 

 Training Validation Optimization Testing 

Aubach 11/2012-2017 2018 2019 1/2020-10/2020 

Lez 10/2008-2015 2016 2017 2018+2019 

Unica 1961-08/2012 09/2012-10/2014 11/2014-09/2016 10/2016-2018 

Gato Cave 1970-08/2003 09/2003-08/2007 09/2007-08/2011 09/2011-05/2015 

Qachqouch 09/2015-09/2018 10/2018-02/2019 02/2019-09/2019 10/2019-01/2020 
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Further, Bayesian optimization is used to derive the length of the input sequence (search space is site 

dependent), the batch size (24 to 28) during training, the number of filters in the 1D-Conv layer (24 to 

28), and the number of neurons in the first dense layer (24 to 28). These hyperparameters are 

optimized on model performance in terms of mean squared error (objective function) in the 

optimization set. While the kernel size was set to 3 for all of the models, the dropout rate was chosen 

site dependently (as high as possible with meaningful results, at least 10%), as well as the number of 

training epochs, the early stopping patience and the number of Bayesian optimization steps (Table 

4). We mostly perform at least 50 optimization steps and stop either when 80 steps are reached or 

after no improvement for 10 steps (Stop Criteria). 

Table 4: Manually chosen Hyperparameters. 

 Dropout 

Rate 

Training 

Epochs 

Early Stopping 

Patience 

Bayesian Optimization Steps  

(Min/Max/Stop Criteria) 

Aubach 10% 200 20 50/80/10 

Lez 50% 200 15 25/50/10 

Unica 10% 100 10 50/80/10 

Gato Cave 50% 100 10 50/80/10 

Qachqouch 10% 500 20 50/80/10 

 

To evaluate the performance of the models, several metrics are calculated: Nash-Sutcliffe Efficiency 

(NSE) (Nash and Sutcliffe, 1970), squared Pearson r (R²), root mean squared error (RMSE), Bias (Bias) 

as well as Kling-Gupta-Efficiency (KGE) (Gupta et al., 2009). For squared Pearson r the notation of the 

coefficient of determination (R²) is used, because the linear fit between simulated and observed 

discharge, thus of a simple linear model is compared, which makes them equal in this case. Further, 

individual performance on high, medium and low flow were investigated using mainly RMSE and Bias. 

Especially, NSE and KGE seem rather unintuitive for such evaluation, because the reference values for 

calculation change, which makes comparison and interpretation difficult. The thresholds to distinguish 

between high/medium and medium/low flow are defined as the 90% quantile of Q and 40% of the 

mean Q value, respectively.  

3.5 Alternative Approach ς Zaghouan Site 

3.5.1 ANN Models 
In a comparative modelling approach, we considered three types of ANN models: Multi-layer 

perceptron (MLP), Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN). In 

addition, in order to characterize the most suitable time scale for our system, we performed daily and 

weekly simulations for each model. For each temporal approach, a simulation configuration has been 

adopted: it consists in predicting a single future value of flow knowing only the data on rainfall, average 

temperature and pressure of the previous days. This configuration is called "seq2val forecasting" or 

"one-step ahead forecasting". In order to prevent overfitting, we used the "dropout" regularization 

method which consists in randomly disactivating some neurons at each iteration. 

The MLP model is a model consisting of interconnected neurons. It has hidden layers of Nc neurons 

each and a linear output layer consisting of one neuron(Kong-A-Siou et al., 2015). Our MLP model 

consists of two hidden layer and one linear output neuron.  
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The LSTM model is a recurrent neural network model. It uses stochastic approximation through 

sequential time series. It consists of several cells; each cell comprising the input gate, the output gate 

and the forget gate. The LSTM model incorporates previous predictions into current predictions (Mbah 

et al., 2021). Our LSTM model consists of an LSTM layer that is connected by a linear output neuron.  

Mostly used in image recognition and classification, convolutional neural networks find their use in the 

prediction of continuous signals such as source flows. The typical structure of a CNN is already 

described in Section 3.3. 

3.5.2 Simulation and Evaluation Approach 
The input data for our models are rainfall, temperature and pressure; the output data is the discharge 

at the source of the Nymphea. Our modelling consists of two phases: a calibration/training phase and 

an evaluation phase. According to this distribution, we have split our data. Thus, 85% (24 years) of the 

data will be used in the calibration phase and 15% (4 years) of the data in the evaluation phase (Figure 

8). Furthermore, in view of the nature of the activation functions and in order to guarantee a better 

distribution of the data and to facilitate predictions, we have standardized our data between 0 and 1. 

This operation has the merit of improving the performance of our models (Shanker et al., 1996).  

 

Figure 8: Data splitting at Zaghouan Site 

Our different models have hyperparameters which are the guiding part of the simulations. However, 

it is not obvious to find the optimal combination of hyperparameters. Therefore, we used Bayesian 

optimization (Nogueira, 2014) to ensure optimal performance. We used the acquisition function 

"expected improvement" or (EI); the function to be maximized being: f (x) = NSE +R² (Wunsch et al., 

2021). 

The evaluation parameters of our models are: R², NSE, Bias, RMSE, rRMSE, rBias. Through these 

parameters, we were able to compare our models and judge their predictive accuracy. 
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4 Results and Discussion 

4.1 Aubach Spring (Austria) 
The modeling results for the evaluation/test period (1/2020-10/2020) of the CNN model at Aubach 

spring are shown in Figure 9. The model was able to accurately model the spring discharge during most 

periods of the test section with high NSE (0.82) and KGE (0.90) values. The second highest peak of the 

whole time series occurs in February and is only slightly underestimated. The snowmelt-influenced 

period from April to Mid-June is accurately modeled as well as the peaks in summer and early autumn. 

In October, a series of peaks can be observed that is not well captured by the model output. A plausible 

explanation is that the input data does not capture the respective local precipitation events because 

of the location of the climate stations outside of the catchment.  

 

Figure 9: Modeling results for Aubach spring in 2020. Dashed and dotted lines: thresholds to determine low, medium and high 
flow. 

Regarding the model performance for low, medium and high flow parts of the test period, RMSE and 

Bias are shown in Table 5. While high and medium flow are systematically underestimated, low flow is 

slightly overestimated. The RMSE is satisfying in general and as expected largest for the simulation of 

the high flow peaks.  

Table 5: Low, medium and high flow evaluation of the model performance at Aubach spring. 

 RMSE [m³/s] Bias [m³/s] 

Total 0.51 -0.06 

High Flow 1.01 -0.33 

Medium Flow 0.43 -0.04 

Low Flow 0.22 0.03 

 

The model uncertainty is very low, especially compared to the discharge variability. Aubach spring 

catchment, as part of the Hochifen-Gottesacker karst system is complex and challenging to model with 

conventional models such as lumped parameter models, due to high differences in altitude, and high 

precipitation heterogeneity (including snow accumulation influence). Despite these facts and sub-

optimal climate station positioning outside the catchment, the CNN model is able to satisfyingly and 

accurately model the discharge time series.  The relatively long time series with a very high temporal 

resolution (hourly), on the other hand, are undoubtedly of great benefit to the model performance. 

Overall, these results show that the chosen approach is powerful in modeling karst spring discharge, 

given that relevant and high-quality input data is present. 
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4.2 Lez Spring (France) 
Figure 10 shows the modeling results for 2018 and 2019 at Lez spring in France with satisfying 

performance measure values (NSE, KGE = 0.77, R² = 0.78). The time series in general is characterized 

by distinct dry periods without any recharge due to anthropogenic water extraction in the saturated 

zone of the aquifer. These periods are quite accurately simulated, which was achieved by using a ReLu 

activation function that does not allow negative output values and that has been implemented for the 

output neuron instead of a classical linear activation. This makes learning zero output easier and agrees 

with the physical understanding that negative output is not possible. During optimization however, 

also a higher number of instabilities in terms of failed training attempts was observed. These failures 

were prone to a high sensitivity to the random number seed and could therefore be easily solved by 

choosing different seeds, nevertheless, careful training observation seems to be necessary when using 

ReLu activation output neurons. Further some inaccuracies in terms of underestimation of higher 

discharge events (e.g. 12/2018-01/2019) and overestimation of smaller events in the first half of the 

year 2019 are observed. The model uncertainty interval derived from Monte-Carlo dropout ensembles 

significantly higher compared to Aubach spring; however, a significantly higher dropout rate of 50% 

has been used. This on the one hand increases uncertainty, but on the other hand also makes training 

more robust and was chosen because no performance decrease compared to a lower dropout rate has 

been observed for Lez spring. 

 

Figure 10: Modeling results for Lez spring in 2018 and 2019. Dashed and dotted lines: thresholds to determine low, medium 
and high flow. 

Similarly as for Aubach spring, the model systematically underestimates high and medium flow, while 

low flow periods are overestimated on average (Table 6). However, low flow is not systematically too 

high, but rather unprecise for some events. Longer periods of zero discharge are captured well.  

Table 6: Low, medium and high flow evaluation of the model performance at Lez spring. 

 RMSE [m³/s] Bias [m³/s] 

Total 0.59 -0.01 

High Flow 1.02 -0.78 

Medium Flow 0.61 -0.14 

Low Flow 0.43 0.23 
 

4.3 Unica Springs (Slovenia) 
Unica springs discharge time series represents the joint discharge of several springs feeding the Unica 

river. The CNN model can profit from a very long data basis of daily data (since 1961) during training 

and therefore shows high performance in terms of the error measures (NSE & R² > 0.85, KGE = 0.74), 

capturing the major dynamic of the spring quite accurately (Figure 11), despite climate input variables 
















